Good News from the Clean Energy Beat: #Solar for All! Clean Energy Powers California! — Jonathan P. Thompson (LandDesk.org) #ActOnClimate

Photo credit: Jonathan P. Thompson

Click the link to read the article on The Land Desk website (Jonathan P. Thompson):

April 26, 2024

😀 Good News Corner 😎

Now this is what I’m talking about: Last week, the Biden administration forked out $7 billion to states, tribal nations, and non-profits to carry out its Solar for All program aimed at expanding rooftop and residential solar and energy storage access to low-income folks and other underserved communities.  About $1.7 billion of that cash will go to the West (see breakdown below). This is what I call a win-win-win-win situation:

  • Win 1 = It will add more solar power to the nation’s energy mix, hopefully displacing some fossil fuel generation, which will result in cleaner air and fewer greenhouse gas emissions.
  • Win 2 = This added solar will be on rooftops or vacant lots in or near towns or cities, reducing the need to blanket the desert with photovoltaics, which can be hugely destructive to ecosystems and wildlife habitat. 
  • Win 3 = Rooftop and community-level solar installations will increase residents’ self-sufficiency and reduce dependency on the grid, which is becoming less and less reliable as more frequent and severe extreme weather events damage infrastructure and utilities are forced to shut off power to reduce wildfire hazard. Plus, many homes that lack access to electricity, especially on tribal lands, will now have power. 
  • Win 4 = This program has the potential to radically transform the residential solar landscape, redistributing this exclusive amenity now reserved to homeowners who can afford to spend tens of thousands of dollars upfront on a solar system, to, well, all of us, including renters. 

Recipients include:

  • Colorado Energy Office: $156 million for single-family and multifamily rooftop solar statewide. 
  • New Mexico Energy, Minerals, & Natural Resources Department: $156 million to “help overcome existing barriers to widespread adoption of distributed solar generation” by expanding access to shared solar beyond the new community solar program. 
  • Utah Office of Energy Development: $62 million to launch a new program to “strengthen the market for deploying residential-serving solar … for disadvantaged and low-income homes” 
  • Montana and Wyoming and Idaho, Bonneville Environmental Foundation: $131 million to “expand economic and environmental benefits of solar to low-income, tribal, and disadvantaged communities.” 
  • Colorado-based Oweesta Corporation: $156 million to “address adoption barriers to Native residential and community solar deployment” in tribal lands across the nation. 
  • Executive Office of the State of Arizona: $156 million to “bring the benefits of the state’s abundant solar resources to the state’s low-income and disadvantaged communities.” 
  • California Infrastructure Economic Development Bank: $250 million to reach “the homes and businesses statewide that are most in need of affordable, reliable clean energy.” 
  • Nevada Clean Energy Fund: $156 million 
  • Hopi Utilities Corporation: $25 million to deploy residential solar and storage systems on the Hopi Reservation, where 35% of households do not have electricity and those that do experience frequent and extended outages. 
  • GRID Alternatives (Western Indigenous Network Solar for All) $62 million. Provides grants and incentives and technical assistance to deploy tribal residential solar, prioritizing communities in Arizona, Colorado, Nevada, New Mexico, and Utah. 
  • Alaska Energy Authority, $62 million, to partner with Alaska Housing Finance Corporation to deploy solar photovoltaic infrastructure statewide. 
  • Oregon Department of Energy, $87 million 
  • Washington State Department of Commerce, $156 million 
  • Alaska, Tanana Chiefs Conference $62 million to provide tribal residents with residential and community solar. 

***

And the good news keeps a coming: Wind, solar, hydropower, and geothermal generation supplied more than 100% of California’s energy demand on 39 of 47 days this spring. It wasn’t all day, by any means, but anywhere from about 15 minutes on some days to just over nine hours on April 20. 

That is to say that a state of 39 million people, with one of the world’s largest economies, ran on non-fossil-fuel energy sources for more than nine hours. That’s a big deal. 

Sure, it was on a Saturday in spring, when power demand tends to be lower, and on 4/20, when I guess a lot of people might have been outside smoking dope, which may or may not have affected electricity use. And a small percentage of that power came from large hydropower dams, which have their own problems and which California does not apply toward its renewable portfolio standards. Still, it’s a milestone that wasn’t imaginable a couple of decades ago, when coal generation dominated the power grid and utility-scale solar and wind power barely registered.

Most of the power came from utility-scale solar installations (California grid operators don’t track rooftop solar output, but it contributed by reducing overall demand). In fact, the state’s collective solar systems not only met demand, but exceeded it enough to charge grid-scale batteries and still have enough left over to export to other states. On some days there was so much solar they had to curtail generation — or basically throw it away.

Here’s what it looked like:

Graphic credit: Jonathan P. Thompson/The Land Desk
The green line represents electricity demand for the day. Part of the reason it dips during the middle of the afternoon is because that’s when rooftop solar output is at its peak, and rooftop solar reduces grid demand since folks are using power from their own panels rather than taking it from the grid. Source: CAISO.

And then there’s the dreaded solar duck curve to deal with. This refers to the shape of the electricity net-demand graph on sunny days (net-demand is determined by subtracting solar and wind supply from demand since they aren’t “dispatchable” power sources). On a number of days this spring, solar output was so high that it pushed the net-demand curve down into negative territory in the middle of the day. The real problem’s start when the sun sets and solar output suddenly diminishes. The net-demand curve shoots back up, forcing grid operators to fire up natural gas generation to “follow the load,” or meet demand. 

But even that dynamic is changing as an ever-increasing amount of that late afternoon load spike is being met with power from grid-scale batteries that had been charging all day. On the evening of April 16, for example, another milestone was reached when battery storage discharge became the largest energy source on California’s grid, contributing nearly as much power as natural gas and nuclear generation combined for about an hour. Just this week, California announced it had surpassed 10,000 megawatts of battery storage capacity — a 1,250% increase from just five years ago. 

Batteries alone, however, won’t get California or the West to 100% clean energy. The region will also need more of what’s known as “geographic smoothing,” or moving power around the region to fill gaps left when wind and solar generation drop off. This might include sending Wyoming wind power to California when the sun stops shining, or shipping California solar to Colorado during the middle of the day. Achieving this will require better regional integration of the grid and power markets. Just yesterday the Biden administration announced a plan to spend $331 million to help build out transmission lines, an important step in realizing this goal.

Read more about the Duck Curve:

The Energy Transition and Public Lands, Part III — December 15, 2021.

A pronghorn hangs out among Wyoming wind turbines. Better integration of the Western grid would allow California and Arizona to draw on Wyoming wind to back up solar when the sun goes down. Jonathan P. Thompson photo.

A recap of Part I and Part II: Climate change is wreaking havoc on the electricity grid as extreme heat spurs an increase in demand for p…

Read full story

***

NEWS: Another proposed pumped hydropower storage project on the Navajo Nation bites the dust.

CONTEXT: One way to store energy is in batteries. Another way is with pumped hydropower facilities, usually consisting of two reservoirs, one above the other. Surplus power from the grid, usually generated by solar or wind during the day, is used to pump water from the lower to the upper reservoir. When the power is needed, such as when the sun sets and solar drops off, water is released from the upper reservoir and gravity propels it through a turbine that feeds electricity into the grid before emptying into the lower reservoir to begin the cycle anew.

It’s smart technology, capable of providing massive amounts of energy just when it’s needed. The problem is, these things require water, dams, reservoirs, pumping plants, and pipelines, all of which can have an impact. That means properly siting these facilities — and working with stakeholders before finalizing plans or applying for permits — is important. And, well, so far, a lot of developers haven’t done a great job with that, and now it’s biting them in the butt.

Confluence of the Little Colorado River and Colorado River; Credit: EcoFlight

A few months ago the Land Desk reported on federal regulators’ rejection of seven proposed pumped hydropower storage projects on the Navajo Nation, while also establishing a policy of denying any project on tribal land if the tribe opposes it. The regulators deferred a decision on one additional proposal — the massive, three-reservoir Big Canyon project that would be on Navajo Nation land along a tributary of the Little Colorado River. The Navajo Nation initially had expressed concerns about the proposal without explicitly opposing it. After the new policy was put in place, the tribe clarified its opposition. This week, the Federal Energy Regulatory Commission followed its new policy and rejected the permit.

It’s a bummer to see so many clean energy proposals go down in flames. Had they been built, the projects would have contributed mightily to the Western energy transition. Their failure, however, is not on the tribal nation or advocates who opposed the projects. The developers are to blame for faulty siting decisions and for failing to adequately consult with stakeholders at the very beginning of the process. That would save everyone a lot of headaches, and it might even result in some good projects getting built in the right places.

For more on the proposals and their problems, check out this excellent piece â€” complete with great maps — by the Grand Canyon Trust’s Daryn Akei Melvyn.

📸 Parting Shot đŸŽžď¸

Ute Mountain in the spring. Jonathan P. Thompson photo.

How much water remains in southeast #Colorado’s aquifers?: Colorado legislative committee approves many millions for water projects in Colorado — including $250,000 for a study crucial for Baca County — Allen Best (@BigPivots) #OgallalaAquifer #RepublicanRiver #RioGrande

Corn in Baca County. Photo credit: Allen Best/Big Pivots

Click the link to read the article on the Big Pivots website (Allen Best):

Unanimous votes in the Colorado Legislature are rare, but they do happen. Consider HB24-1435, the funding for the Colorado Water Conservation Board projects.

The big duffle bag of funding for various projects was approved 13-0 by the Senate Water and Agriculture Resources Committee. It had bipartisan sponsors, including Rep. Marc Catlin, a former water district official from Montrose.

“Colorado has been a leader in water for a long, long time, and this is bill is an opportunity for us to stay in that leadership position,” said Catlin, a Republican and a co-sponsor.

“This is one of my favorite bills,” said Rep. Karen McCormick, a Democrat from Longmont and former veterinarian. She is also a co-sponsor.

This historical photo shows the penstocks of the Shoshone power plant above the Colorado River. A coalition led by the Colorado River District is seeking to purchase the water rights associated with the plant. Credit: Library of Congress photo

The bill has some very big-ticket items, including $20 million for the Shoshone power plant agreement between Western Slope interests and Public Service Co. of Colorado, better known by its parent company, Xcel Energy. Andy Mueller, the general manager of the Glenwood Springs-based Colorado River District, called the effort to keep the water in the river “incredibly important” to those who make a living in the Colorado River Basin.

This map shows the 15-mile reach of the Colorado River near Grand Junction, home to four species of endangered fish. Map credit: CWCB

Mueller also pointed out that keeping water in the river will benefit of four endangered species of fish that inhabit what is called the 15-mile stretch of the Colorado River near Grand Junction.

Another $2 million was appropriated for the turf-replacement program in cities, a program first funded in 2022. Another mid-range item is telemetry for Snotel sites, to keep track of snow depths, the better to predict runoff. It is to get $1.8 million.

Among the smallest items in the budget is a big one for Baca County, in Colorado’s southeast corner. The bill, if adopted, would provide the Colorado Water Conservation Board with $250,000 to be used to evaluate the remaining water in aquifers underlying southeastern Colorado. There, near the communities of Springfield and Walsh, some wells long ago exhausted the Ogallala aquifer and have gone deeper into lower aquifers, in a few cases exhausting those, too. Farmers in other areas continue to pump with only modest declines.

What exactly is the status of the underground water there? How many more decades can the agricultural economy dependent upon water from the aquifers continue? The area is well aside from the Arkansas River or other sources of snowmelt.

A study by the McLaughlin Group in 2002 delivered numbers that are sobering. Wes McKinley, a former state legislator from Walsh, at a meeting in February covered by the Plainsman Herald of Springfield, said the McLaughlin study numbers show that 84% of the water has been extracted. That study suggested 50-some years of water remaining. If correct, that leaves 34 years of water today.

Tim Hume, the area’s representation on the Colorado Groundwater Commission, has emphasized that he believes this new study will be needed to accurately determine how water should be managed.

How soon will this study proceed? asked Rep. Ty Winter, a Republican from Trinidad who represents southeastern Colorado. Tracy Kosloff, the deputy director of the Colorado Division of Water Resources, answered that the technical analysis should begin sometime after July. “I would think it is reasonable to finish it up by the end of 2025, but that is just an educated guess.”

She said the state would work with the Baca County community to come up with a common goal and direction “about how they want to manage their resources.”

Ogallala Aquifer groundwater withdrawal rates (fresh water, all sources) by county in 2000. Source: National Atlas. By Kbh3rd – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6079001

Unlike the Republican River area of northeastern Colorado, where farmers also have been plunging wells into the Ogallala and other aquifers, this area of southeastern Colorado has no native river. In the Republican Basin, Colorado is trying to remove 25,000 acres from irrigation by the end of 2029 in order to leave more water to move into the Republican River. See story. A similar proposition is underway in the San Luis Valley, where farmers have also extensively tapped the underground aquifers that are tributary to the Rio Grande. See story.

San Luis Valley Groundwater

The closest to critical questioning of the bill came from Rep. Richard Holtorf, a Republican who represents many of the farming counties of northeastern Colorado. He questioned the $2 million allocated to the Office of the Attorney General.

He was told that $1 million of that constantly replenishing fund is allocated to the Colorado River, $110,000 for the Republican River, $459,000 for the Rio Grande, $35,000 for the Arkansas and $200,000 for the South Platte.

Then there’s the litigation with Nebraska about the proposed ditch that would begin in Colorado near Julesburg but deliver water to Nebraska’s Perkins County. Colorado hotly disputes that plan.

Lauren Ris, the director of the Colorado Water Conservation Board, said Colorado is “very confident in our legal strategy.”

Holtorf also noted that the severance tax provides 25% of the funding for the water operations. The severance tax comes from fossil fuel development. As Colorado moves to renewable energy, “what happens to this Colorado water if we kill the goose that lays the golden egg?”

Ris replied said future declines in the severance tax is a conversation underway among many agencies in Colorado state government.

The South Platte Hotel building that sits at the Two Forks site, where the North and South forks of the South Platte River come together. Photo: Brent Gardner-Smith/Aspen Journalism

Column: Changing our lives is scary. But the #climatecrisis is way scarier — @Sammy_Roth (The Los Angeles Times) #ActOnClimate

Colstrip Power Plants 1-4 from right to left. By P.primo (talk) – I created this work entirely by myself., Public Domain, https://en.wikipedia.org/w/index.php?curid=18292329

Click the link to read the column on The Los Angeles Times website (Sammy Roth). Here’s an excerpt:

April 19, 2024

Yet as I’ve traversed the American West over the last two years with my L.A. Times colleagues, exploring how the transition from fossil fuels to cleaner energy is reshaping sensitive ecosystems and rural communities, one lesson has risen above the rest: If we don’t embrace change now, while we still have a choice, far worse changes will eviscerate us later. That lesson crystallized for me over the last few months, as I wrote about a Montana coal town struggling to accept that its West Coast customer base no longer wants coal power — you can read my full story here — and as I struggled personally to figure out what kinds of stories I want to tell going forward, after a decade of reporting on challenges facing the energy transition…

Folks in Colstrip [Montana] and similar towns are justifiably worried that if big cities replace fossil fuels with renewable energy, their lives will change for the worse. They’re not totally opposed to wind and solar, but they’re skeptical those technologies will ever fully replace fossil fuels, in terms of the bountiful jobs, tax revenues and other economic benefits that coal, oil and gas have provided.

A huge year for #Colorado #solar in 2023. And it’s just a beginning — Allen Best (@BigPivots)

Photo credit: Allen Best/Big Pivots

Click the link to read the article on the Big Pivots website (Allen Best):

April 4, 2023

Mike Kruger of the Colorado Solar and Storage Association explains why the big jump now and how storage has become an important component of the trade organization’s agenda.

First, a question for you: What is your first reaction to seeing the chart below. Is it wow! Or had you already realized that this was coming, this break-out year for solar in Colorado?

When I talked with Mike Kruger, who directs Colorado Solar and Storage Association, he assured me that most readers of Big Pivots will not be surprised. Most saw it coming – and, in fact, had it not been for Covid and the supply disruptions, Colorado might have had its big leap during 2021.

The chart comes from the Solar Energy Industries Association report of March 2024. The report — which brims with interesting data — says nearly 40% of Colorado’s 4,112 megawatts of installed solar capacity was installed in 2023. And that Colorado is projected to gain another 2,835 megawatts of capacity in the next five years.

Credit: Solar Energy Industries Association report of March 2024

A full admission: I said wow, and I had been tracking this story since roughly 2016 – which is one place where this story starts. Xcel Energy that year began its electric resource planning cycle. It got bids late in 2017 and announced them just after Christmas. I remember seeing the e-mail distributed by Leslie Glustrom, an Xcel shareholder and watchdog. Wind, especially, but solar, too, had delivered jaw-dropping offers. In that instant it became apparent to me that coal would soon to be in our rear-view mirror.

The Colorado Public Utilities Commission approved Xcel’s plans for a deep investment in renewables in September 2018.

That November Jared Polis was elected Colorado governor after having campaigned on a platform of 100% renewables.

In early December, Xcel Energy announced it planned to achieve an 80% reduction in carbon emissions by 2030 as compared to 2005 levels. Platte River Power Authority announced an even more ambitious goal in December but one festooned with conditions. And by the next May, Colorado had a law that required Xcel and Black Hills Energy to attain 80% decarbonization by 2030.

Kruger had arrived in the midst of this sudden pivot to take the reins of what was then called the Colorado Solar Energy Industries Association. At the time, the staff consisted of Kruger and one other individual. The organization now has six staff members, suggestive of the growth of the solar industry in Colorado.

On a recent Friday, between an emergency discussion about legislative affairs and his next appointment, Kruger talked with Big Pivots for about 25 minutes about the context for this graph and the story that lies beyond.

Big Pivots: What explains this big jump in solar during 2023 in Colorado?

Mike Kruger: We’re finally seeing the fruits of some of our labors here to decarbonize stuff. The big jump is explained largely by Thunder Wolf and Neptune, Xcel’s two big solar projects in Pueblo County. Nearly 500 MWs of new solar and 125 megawatts of battery as well. All are for Xcel Energy. And then we have the projects of the electrical cooperatives, including the 80-megawatt project out by Bennett (east of Denver). Hunter. That power goes to CORE Electric Cooperative and …

Holy Cross Energy.

Yeah. The Hunter project came on in 2023. Multiple other smaller projects entered service in 2023, too.

We’re just seeing the fruits of the labor by COSSA and other advocacy groups to decarbonize. Neptune and Thunder Wolf were a result of the solicitation in 2017 that came online in 2023. So it takes time to build these things. Obviously, we have a pandemic between them, which pushed the timeline even further.

Now that they’ve been set up, these dominoes are going to start falling. We’re going to really see hundreds, if not thousands, of megawatts of solar added to the grid every year through the rest of the decade.

In 2019, when we passed our first decarbonization bill, we had a 15-gigawatt system in Colorado. That was our peak demand. 80% of that is around 12 gigawatts of demand. Through 2019, we had installed about 2 gigawatts of renewables, mostly wind.

So, to meet those decarbonization goals, you have to build a lot of solar farms. You have to put up a lot of wind turbines. For the first time we’re seeing that legislative and policy work finally coming together.

We can only expect it to get bigger. The future now is 25 gigawatts by 2034, according to modeling by the Colorado Energy Office. To hit that we now have to add a gigawatt (of generation) every year for all the 2020s and then need to add two gigawatts a year for the first five years of the 2030s.

It’s a good time to be a solar installer, to be a solar developer. There’s a “gignormous” market in Colorado. It’s heavily competitive, but it‘s a big market.

Mike Kruger, right, and Will Toor, director of the Colorado Energy Office, after a panel discussion about net-metering at the Colorado Solar and Storage Association annual conference in February. Credit: Allen Best/Big Pivots

How deeply is this understood within your industry. And how well do you think the general public understands this?

I suspect the world’s energy geeks recognize where solar is and where it’s going to be. I don’t think they would be surprised. In fact, I think most would be frustrated that the jump didn’t happen in 2021 rather than in 2023.

And I don’t think any Big Pivots readers would be surprised. They might be surprised by the size of the jump, but we are starting from a pretty small base.

As for people writ large, they have no idea that renewables were responsible last year for 30% of Colorado’s electric grid. I think most people would be shocked. If you were an Xcel customer, it was even higher, I think close to 50%.

And you didn’t experience outages, or at least any more outrages than you have experienced previously. You lost power for four hours in 2023, like you did in 2022, like you did in 2021, right? That speaks to how well the utilities are quickly figuring this stuff out. Kudos to them. They have one job, keep the lights on, and they’re doing it with now a much higher carbon-free mix and more intermittent generation.

OK, what we see here was basically an outcome of decisions made in 2017. If memory serves me, for much of that decade prices for solar had come down 10% a year. Although I think the costs have now leveled off.

Some of the best prices we had were in that Xcel RFP from 2017. The prices are up now. They’ve elevated, but they’re still tons cheaper than the alternatives. Go back to Xcel Energy’s most recent 120-day report. Even solar-plus-storage came in cheaper than gas. Nobody bid coal, but solar would come in cheaper than coal, even from the existing coal plants.

Is it as cheap as it ever was? No. But it’s still really cheap. And I think that whether you’re a homeowner or a utility â€” and increasingly we’re seeing corporate buyers, such as Amazon and Google — it’s a very viable option.

That’s combined with really strong (state) policy support. Our neighbors to the west gutted their efforts on solar support and generally climate friendly policies. And now they don’t have anywhere near the decarbonized electricity system that we do.

The neighbors to the west being Utah?

Yes, specifically Utah. They have one big city, like we do. No offense to our good folks in Colorado Springs and Pueblo. And they have similar geography: lots of mountains and high desert.

Hunter Solar, located east of Denver and south of Bennett, came online in late 2023. CORE Electrical Cooperative has 45 megawatts of the generating capacity and Holy Cross Energy has 30. Photo credit: Allen Best/Big Pivots

So your members are not surprised by this. They knew it was coming. They might’ve wished that it had happened earlier, if not for Covid. Is that surge then reflected in your organization? By that, I mean the number of members you have. And I’ve been noticing that you have added staff.

It’s a “virtuous cycle.” When I started, it was me and one other individual, and we had, I think it was, 83 to 85 members. We didn’t exactly know how many we had. This week we crossed 300 members. Now, we’re at almost four times the size. And I’ve gone from me and a single individual to now me and five others. We have six on our staff.

My membership has invested in me and the organization, and we have won a bunch of policy victories, which then opens the market even further. And then that allows those folks to invest further in the policy and advocacy work that we do.

We are getting pretty close to the top. An annual survey of companies doing work in each market shows about 350 in Colorado, and I have 300 of them. Using the kind-of-standard 80-20 rule. I think we’re probably pretty close to the top as far as membership numbers go.

That doesn’t mean those members won’t continue to grow. Part of the point of our work is to ensure that members who are currently doing two rooftop systems a week can, if their customer demand is there, expand to five a week.

Or consider Sandbox Solar in Fort Collins, which started in 2015. They were exclusively a rooftop company. All they did was residential rooftop. Now they’ve expanded into the commercial-industrial market and can be successful with multiple footprints. They’re a different company now than when they started.

If memory serves me, you came on in 2018, right?

Correct. I think my first day was Oct. 1. Then we (his family) moved here right around Halloween.

Then in the spring of 2019, my board said, we’re rebranding. We’re adding storage, so rename us, rebrand us, build a new website.

How important is that storage as a component of what you do? Do you have companies that are storage exclusive?

We have some companies that are exclusively developers of storage on a large scale.

Increasingly, we have solar folks expanding (into storage) Photon Brothers is a really good example. The company has been doing rooftop systems for maybe 10 years, and they are now the leading installer of (Tesla) Powerwalls in the state because they’ve really leaned into that. They have a group of customers for which they know so this makes good sense.

For solar of 20 megawatts or more to be bid into a utility RFP without the option to have batteries is almost unheard of.

In places that have price signals, like time-of-use rates, we see batteries being used there and also in places that are prone to outages. So we’re definitely seeing that as an expanded business opportunity, but almost always by a solar company that’s moving into that space. The exception, like I said, we have a few large-scale companies that do only battery storage.

Mike Kruger, right, chats with Kevin Smith, then chief executive of Lightsource bp, upon the near completion of the Bighorn solar project in October 2021. The 300 megawatt solar project was built for Evraz, the owner of the steel mill in Pueblo. Since then Target, Walmart and Amazon have all installed solar projects associated with their operations in Colorado. Amazon has a 6-megawatt solar project in Aurora. Credit: Allen Best/Big Pivots

Looking back to before you arrived in Colorado, your predecessors spent a fair amount of time at the PUC and in meetings, trying to work toward policies. But it’s my sense that you now have two attorneys that can be engaged in the PUC process. Are there signal accomplishments that you think you’ve been able to achieve in the policy realm?

Some of the stuff I’m proudest of is still working its way through.

First, I want to be clear that I stand on the shoulders of the folks that came before me. I didn’t come into an organization that I created from scratch. We’re actually celebrating our 35th anniversary this year.

One item I’m very proud of is that we just got a tariff from Xcel and Black Hills about multi-unit net-metering so that for apartment dwellers you can put a large solar array on-site somewhere in the apartment or on the roof and the individual apartment occupants and renters can get solar credits. That’s a huge market that has not been tapped. That was a single issue that we pushed. There really wasn’t a lot of other folks pushing it. Once we got it to the Legislature and brought it to people’s attention, we picked up some allies. That’s one I’m proud of.

The most recent Xcel electric resource plan had a lot of small details, but those details add up. We’re getting 5,300 megawatts of new renewables being procured.

One of our big wins was in Xcel’s initial filing, they only wanted 400 megawatts of batteries. We forced them back to the drawing board. They are ending up buying 1,848 megawatts of batteries. So, more than four times what was originally planned.

Once you get all those batteries on the grid, we will better be able to integrate renewables. We’ll decarbonize faster. We’ll have less need for gas-peakers. And we’ll have an increasingly stable grid, right?

Batteries solve a lot of the intermittency issues that had had many utilities concerned. They don’t solve everything. I get that lithium-ion batteries have four-hour windows or six-hour windows. But four hours is better than nothing. And energy geeks like the Big Pivots readers will know that we really are only worried about four hours or thereabouts most days. Except for—

When you’re worried about a hundred hours when the wind isn’t blowing, right?

Yeah, exactly. There will be some point in the future when we have 10 days of no sun, no wind, and it will be dastardly cold or whatever. And we’ll need something bigger than that.

That’s why COSSA is involved in some of the conversations about regional markets and expanded transmissions, because it may be brutally cold here with no wind and no solar, but it won’t be in New Mexico or it won’t be in Idaho.

Hopefully we’re smart enough to grab a big geographic footprint to offset those few occasions.

Allen, there’s plenty more to do. The state is far from decarbonized. We have some policies in place, but not enough. And then we’re adding a boatload of new load (demand), right? New electrification of vehicle and fleets and industrialization and buildings. We’ve haven’t solved any of that. It’s a huge opportunity for my membership. It’s millions and millions of dollars of new private investment in mitigating climate change that we haven’t even tapped into yet.

Any workforce issues? As we talk about decarbonizing buildings, it’s brought up again and again that we don’t have the workforce familiar with heat pumps, for example.

Yes and no. Right now, solar is kind of in a steady state where we’re not hiring but we’re not firing. If you’ve been a student of this for a long time, we’ve had the “solar coaster” where we’ve ramped up and hired a bunch of folks and then the bottom dropped out and we let a bunch of folks go. Right now I think things are pretty steady state.

However, like other trades, we struggle to attract new individuals. You can make a lot of money being a crew lead or being a sales lead or a chief designer, but maybe it’s on us to do a better of communicating that. It’s not as sexy as say, going to Harvard or getting your master’s degree from CU or whatever.

All the trades have this problem. That includes plumbers and electricians. I applaud a bipartisan effort to draw attention to that through education. Honestly, though, if you wanted to become an electrician today, if you know where to look, you can do it for free. The grants are available, the training is available, and you can end up with a $150,000 job and have no debt.

What has changed? Why no workforce problems?

Interest rates, my friend. Interest rates.

Quick Facts from the SEIA report
  • National Ranking: 12th (4th in 2023) .
  • State Homes Powered by Solar: 838,462 homes.
  • Percentage of State’s Electricity from Solar: 9.03%.
  • Solar Companies in State: 394 (38 Manufacturers, 182 Installers/Developers, 174 Others).
  • Total Solar Investment in State: $7.7 billion.
  • Prices have fallen 47% over the last 10 years.
  • Growth Projection: 2,836 MW over the next 5 years (ranks 19th).

OK, and you have to go in a minute, but let’s talk land use.

I am not totally convinced that we have a problem to solve yet. I think there is potential for conflict, whether that’s on the local community with NIMBys or the environmentalists who are worried about specific species or ecosystems. However, we don’t have them yet.

For us to be solving a problem at the Legislature that we don’t have yet feels a little premature. I know there are folks on the other side who say, well, we should solve them before they become a problem. I get a little worried about solving a problem that doesn’t exist because we might solve it in the incorrect way and create all kinds of unintended consequences. Coming up on seven weeks left in the session, we don’t have a bill yet. To my knowledge, there’s still not an agreement about what a bill should contain.

But things could move quickly – as always.

And then Kruger was off to his next meeting. The land use in question was a non-bill that has been getting a lot of attention – including from Big Pivots. See: â€œShould Colorado tell counties how to review renewable projects?”  It would set a statewide standard for evaluating renewable energy projects by towns, cities and county governments. In late February, Sen. Chris Hansen told Big Pivots he planned to introduce it during March. As of early April, it has not.

What will have to wait are my questions about hail and solar panels. My in-house editor wants to know whether Colorado’s proclivity for hail made it somewhat less attractive to solar developers.

And then there’s the question about all those acres and acres of warehouse roofs that are proliferating along I-70 and I-76 on the eastern and northeaster edges of metropolitan Denver. What role might they place in the future? Will they be covered with solar panels some day?

China is all in on green tech. The U.S. and Europe fear unfair competition — The Washington Post

Credit: Beijing Energy International

Click the link to read the article on The Washington Post website (Christian Shepherd). Here’s an excerpt:

March 29, 2024

…China’s overwhelming dominance has alarmed officials in the United States and in Europe, who say they are worried that a flood ofcheap Chinese products will undercut their efforts to grow their own renewable energy industries — especially if the Chinese companies have what they consider an unfair advantage. Treasury Secretary Janet L. Yellen, who is expected to soon make her second visit to Beijing in less than a year, said in a speech Wednesdaythat she will press China to address “excess capacity” — including in solar, electric cars and batteries — that “distorts global prices” and “hurts American firms and workers.” Combined, this raises the specter of another trade war, one that activists say could pit protectionism against planet…

China’s metamorphosis into clean tech giant was ordered from the very top. Leader Xi Jinping made supporting “essentially green” industries a priority last month as he tries to stop the world’s second-largest economy from slowing…Clean energy is a bright spot in an otherwise gloomy economic outlook: China’s exports of electric vehicles, lithium-ion batteries and solar products soared 30 percent to $146 billion last year. BYD overtook Tesla in 2023 to become the world’s top-selling electric-car maker. This helped make the renewable energy industry the biggest contributor to the country’s economy, ahead of every other sector, according to the Center for Research on Energy and Clean Air, a think tank. That shift has come about thanks in no small part to state support. For over a decade, Beijing has used measures including subsidies and tax breaks to create dozens of huge conglomerates that dominate sustainable energy industries. The Tongwei facility, toured by The Washington Post, is 15 percent owned by two of Chengdu city’s state-run investment companies. In the first nine months of last year, the company reported being subsidized with $125 million by the state, a 240 percent rise from 2022.

La Plata Electric bids adieu to Tri-State G&T — Allen Best (@BigPivots) #ActOnClimate #KeepItInTheGround

Downtown Durango on a Sunday morning. Photo credit: Allen Best/Big Pivots

Click the link to read the article on the Big Pivots website (Allen Best):

March 26, 2024

Directors say they see less risk going solo than staying tethered to their long-time wholesale provider

In putting together their annual meetings for members, Tri-State Generation and Transmission tries to put on a happy face of good health, team spirit, and forward movement. That’s what associations do, of course.

A happy face will be harder to muster when Tri-State holds its annual meeting next week at the Westminster Westin hotel. On May 1 it will lose its single largest member, United Power, which alone is responsible for more than 20% of the electricity supplied by Tri-State.

And on Monday morning [March 22, 2024], directors of another cooperative, Durango-based La Plata Electric Association, voted to serve notice of the coop’s plans to exit in two years. La Plata is the fifth largest of Tri-State’s 42 members, responsible for 5.7% of the total demand over a three-year period.

“We have kicked the tires,” said one of the directors, Rachel Landis, moments before the 9-to-3 vote. “We have been staying up late at night.”

“It’s a big day, a monumental day,” said Ted Compton, the chair of the board of directors, in a later interview with Big Pivots. “Nobody thinks that this decision will make our lives in this coop easy at all, but we have self-determination to make the choice that we want and our members want.”

La Plata has been studying its options for the last five years. At one point, in 2021, it chose a partial-requirements contract with Tri-State. The co-op even had an alternative supplier for 50% of the generation. But that approach went nowhere as the formula got balled up in the review by the Federal Energy Regulatory Commission, or FERC. Still, it left a sour taste still evident on the tongues of some directors.

Smaller tent needed

In 2026, when La Plata leaves, Tri-State will be left with 38 members. Also leaving in the interim will be Granby-based Mountain Parks Electric in Colorado and Nebraska’s Northwest Rural Public Power District.

For many years Tri-State had 44 members. The exodus began in 2016 when Kit Carson Electric of Taos, N.M., left Tri-State to pursue a different vision. Some wondered about the disaster ahead. Kit Carson had to pay $37 million to break its all-requirements contract to 2040. It hooked up with a new company, Denver-based Guzman Energy, which had no power generation of its own — although it now does.

Instead of a disaster, Kit Carson has triumphed. In June 2023 it made the final payment to Tri-State while also completing enough new solar to meet 100% of daytime needs in its service territory in northern New Mexico. It has also been building microgrids and pursuing hydrogen as a storage solution.

A retired Tri-State employee who lives in the Durango area urged the directors to stick with Tri-State. The utility can do renewables at scale, he said.

“Please do not try to get out of this contract with Tri-State,” said one woman, who said she was from rural La Plata County.

Another speculated that La Plata will have to pay $200 million or more to break its contract with Tri-State. Even if La Plata saves money, he added, “My kids will have grown up by the time we recoup $200 million.”

Compton, in his interview with Big Pivots, declined to give a figure. Tri-State, in a statement posted after the La Plata decision,  said that the estimated value of La Plata’s contract termination payment to Tri-State is estimated at $209.7 million, with a final amount to be calculated prior to withdrawal.

Mark Pearson, a Durango resident, pointed to Kit Carson’s success. “It’s not  like we’re the first one out of the gate,” he said. He cited a number of solar projects west and south of Durango. “There are an abundance of local energy sources that would be cheaper than our current contract with Tri-State.”

Directors supporting the exit emphasized their views that Tri-State has failed to be a viable partner. The contract to 2050 – agreed to in 2006 — does not meet La Plata’s needs now, they said.

“We need the ability to make decisions, be nimble, have flexibility, to have local generation,” said Tim Wheeler. “And the contract with Tri-State to 2050 does not present that at all. It represents something from 20 years ago.”

Decision to seek FERC regulation

Wheeler also cited the decision by Tri-State to seek regulation under FERC, which is far more complex,  expensive and time consuming than regulation under the state PUC. To do so, Tri-State had to create a new class of members in 2019 who are not electrical cooperatives. For example, it added a greenhouse near Fort Lupton and a hunting guide from near Craig.

Joe Lewandowski, a director from Durango, urged La Plata members to take the long view of 5, 10 to 20 years when viewing costs. He also suggested that there was more risk to staying with Tri-State.

Asked about risk, Compton offered a couple of analogies.

“A lot of  people simplistically see this as a decision to stay on a stable ship and get what need or jump off and swim on your own. That is not the way that La Plata has evaluated this. We currently do not see Tri-State as a stable ship. There are a lot of chinks in their armor, and it makes us nervous to be attached to that.”

La Plata, he added, feels more comfortable charting its own course. Tri-State, he said, got off course by seeking federal regulaton.

Tri-State went into the energy transition carrying heavy debt. It has pinned much hope on federal aid through the inflation Reduction Act to cover the cost of retiring stranded assets even as it builds lower cost renewables and natural gas.

But Wall Street analysts in the last couple of years have taken an increasingly dim view of Tri-State’s financials. For several years they have downgraded Tri-State’s credit-worthiness in a series of financial appraisals.

And Compton observed that Tri-State has encountered many problems at FERC.

In its statement, Tri-State made its case for why it should be seen as a viable wholesale provider going forward. In 2030, when 70% of its energy comes from renewables, Tri-State is forecast to achieve an 89% reduction in greenhouse gas emissions in Colorado from a 2005 baseline.

Tri-State  has not raised its wholesale rates since 2017 – with an average 6.36% wholesale rate increase proposed to go into effect in 2024. That is being held up at FERC.

“Tri-State’s members have created tremendous momentum toward an energy transition that will provide long-term reliability and rate competitiveness, while reducing emissions and increasing flexibility to provide industry-leading optionality for members,” said Duane Highley, Tri-State’s CEO. La Plata’s “board has chosen not to be part of this future and go it alone on a different path, even as the region faces increasing reliability challenges.”

Why now for this decision?

Why a special meeting for the decision? And why just 10 days after Jessica Matlock, the general manager for the five previous years, left for a job at a larger organization in the Pacific Northwest?

Compton said the timing of the decision had nothing to do with Matlock’s departure.

But why not wait until April and the regularly scheduled board meeting? Because, he said, the board had decided the time was right to make the decision. It had all the information it needed.

He dismissed an observation made by the chief executive of another Colorado co-op that the timing allows La Plata to use its 2023 financials in its application to FERC. That will make La Plata exempt from any capital investments going forward such as new generation and transmission planned by Tri-State — and hence might lower the amount that La Plata will have to pay Tri-State to exit.

Compton repeatedly characterized that observation as speculative. “It was just one of one of many factors that we saw coming in the April 1 timeline,” he said.

La Plata has been a member of Tri-State since 1992 when it and other electrical cooperatives from Western Colorado joined in the wake of the bankruptcy by their former wholesale supplier, Colorado Ute.

Colorado Ute had over-extended itself to build three coal-burning units at Craig for an oil-shale industry that never arrived. Tri-State took over Colorado Ute’s members and its coal plants at Craig. Now, Tri-State is struggling in part because of the cost burden of those coal plants that will be closed between 2025 and 2030.

Craig Station in northwest Colorado is a coal-fired power plant operated by Tri-State Generation & Transmission. Photo credit: Allen Best

A Floating Solar Array Could Help #FortLupton Clean Its Water — #Colorado Times Recorder

Floating solar array via the Colorado Times Recorder.

Click the link to read the article on the Colorado Times Recorder website (Robert Davis):

After years of dealing with contaminated groundwater and an unreliable water supply, officials in Fort Lupton say a single solar project could solve both issues for the foreseeable future. 

The city has an aging diesel-powered generator that has a habit of going offline at times of high demand and power outages. Officials have also been working to reduce algae blooms in their 300-acre-foot reservoir that the water treatment plant turns into drinking water. 

To address both these issues, the city partnered with Brighton-based power provider United Power and contractor Schneider Electric to replace the old generator with an 850-kilowatt solar array and a 1,147-kilowatt battery storage system that floats in the city’s water treatment plant.

The project could receive up to $6.1 million in federal funds from the U.S. Department of Energy as part of its $1 billion Energy Improvements in Rural or Remote Areas Program, which was created under the Bipartisan Infrastructure Law in 2021. However, the funding is not yet guaranteed, according to U.S. Rep. Yadira Caraveo (D-CO), who represents Fort Lupton and is pushing the project.

Fort Lupton City Administrator Chris Cross said he expects the project to increase power redundancy for the city, meaning it will have more than one power source to draw from. Cross also expects Fort Lupton residents to see roughly 9% savings on their average power bill. 

Residents of Fort Lupton pay an average of $0.12 per kilowatt hour for residential power, which is about 5% greater than the statewide average, according to data from Electricity Local. 

“Coupled with the floating panel benefits to the water storage, we are excited to see how high our overall savings will be from the project,” Cross said. 

Fort Lupton, like many rural communities in Colorado, has faced challenges providing clean drinking water for decades. Data from the Colorado Department of Public Health and Environment shows the city has recorded 268 water quality incidents since 1995. That total is comparable to much larger cities that are fed by waters from Carter Lake like Superior, Louisville, and Broomfield even though Fort Lupton has the smallest population at just 8,500 residents. 

One of the most memorable water quality incidents in Fort Lupton happened in March 2009 when residents reported that their tap water had become flammable. An investigation found that nearby natural gas wells were leaking into the city’s groundwater supply, the Greeley Tribune reported. 

In November 2023, a water main break at the intersection of 9th St. and Lancaster Ave. in Fort Lupton caused a high concentration of chlorine to enter the water supply for the nearby neighborhoods. Officials with CDPHE’s water quality division told Fort Lupton staff that “there will be water quality complaints” resulting from the break and that residents should flush their ice makers and sinks, although “a mandatory advisory would not be necessary at this time,” according to emails contained in a November 2023 CDPHE water quality incident report.  

The city’s most recent water quality report also shows that the city’s water treatment plant reported one health-based violation in 2023 for having an inadequate backflow prevention and cross-connection control program. This program, â€œUncontrolled cross connections can lead to inadvertent contamination of the drinking water,” the report says. Fort Lupton has hired a contracting firm called Aqua Backflow to help improve its backflow issues, according to the city’s website

Schneider Electric North America Microgrid President Jana Gerber said these are just a few of the issues that the project team wanted to address when they pitched the microgrid idea to Fort Lupton officials. Gerber added that the project could serve as a model for other microgrid partnerships in rural communities. 

As part of the agreement, Schneider Electric is responsible for designing and building the microgrid. United Power would then become the owner and operator of the grid while Fort Lupton pays for maintenance. United Power also plans to partner with Aims Community College and the BUENO Center for Multicultural Education to provide contracting outreach, according to United Power CEO Mark Gabriel. 

John Tracy, director of the Colorado Water Center at Colorado State University in Fort Collins, said the issues with Fort Lupton’s drinking water system are indicative of the city’s age. Fort Lupton was incorporated in 1889, and Tracy said the city’s existing water system likely dates back to the 1970s when the Clean Water Act provided billions in federal subsidies for water improvement projects. 

But maintaining that infrastructure is a delicate dance that is difficult for rural communities to perform, Tracy added. Many rural towns like Fort Lupton collect enough water fees to operate their system, not improve it, Tracy said. Fort Lupton’s 2024 budget projects a 10.7% decrease in water sales tax collections and a more than 5% increase in expenditures from its water sales tax fund. The city also plans to spend more than $18 million on capital improvements for its water system over the next six years. 

With all of the planned expenditures, Fort Lupton needs to find a place to cut its operating costs. That’s where the floating solar array comes in. Tracy said Other cities like San Antonio, Texas have come to the same conclusion that green technology can reduce their operating costs by reducing their dependence on fossil fuels, which are more expensive to acquire than electricity.

“Fossil fuel energy prices have been too variable and it’s difficult to blend that into a municipal budget and project what those costs are going to be two years from now,” Tracy said. “If you’re doing something like either wind or solar, you have much more predictability in the cost.”

‘On stolen land’: Tribes fight clean-energy projects backed by Biden: From power lines to copper mines, tribal leaders are raising concerns about projects essential to President Biden’s climate goals‘ — The Washington Post #ActOnClimate

Oak Flat, Arizona features groves of Emory oak trees, canyons, and springs. This is sacred land for the San Carlos Apache tribe. Resolution Copper (Rio Tinto subsidiary) lobbied politicians to deliver this National Forest land to the company with the intent to build a destructive copper mine. By SinaguaWiki – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=98967960

Click the link to read the article on The Washington Post website (Maxine Joselow). Here’s an excerpt:

March 4, 2024

“This is our land,” said [Verlon] Jose, whose tribe [Tohono O’odham Nation] includes roughly 38,000 members across southern Arizona and northern Mexico. “It should all be protected.”

[…]

Jose is one of several tribal leaders nationwide who are growing frustrated with the Biden administration and its ambitious plans for clean-energy projects that could affect their ancestral lands. While the White House has worked to repair the federal government’s relationships with Indigenous peoples, that effort is conflicting with another Biden priority: expediting projects essential for the energy transition…The SunZia transmission line is one of those projects. Once complete, the power line would carry clean electricity from massive wind farms in New Mexico to more-populated areas as far away as California. The Biden administration has championed SunZia as a key pillar of its plans for fighting climate change and boosting green energy, and has defended its engagement with area tribes…

“We do not disagree with renewable energy,” Jose said. “We are for renewable energy. You know what the fix to this issue is? They could have rerouted it. But they didn’t listen.”

[…]

About 70 miles east of Phoenix, one of the tribes fighting SunZia — the San Carlos Apache — is also working to stop a proposed copper mine on land that it considers sacred. In Nevada, some tribal activists are opposing one of the world’s largest mines for lithium, a mineral crucial to the development of batteries for electric vehicles. And in Oklahoma, a federal judge recently took the rare step of ordering the removal of a wind farm on Osage Nation land.

2024 #COleg: Should #Colorado tell counties how to review renewable projects? — Allen Best (@BigPivots) #ActOnClimate

The Crossing Trails Wind Farm between Kit Carson and Seibert, about 150 miles east of Denver, has an installed capacity of 104 megawatts, which goes to Tri-State Generation and Transmission. Photo/Allen Best

Click the link to read the article on the Big Pivots website (Allen Best):

February 23, 2024

A bill being readied for introduction in March would create a state standard for review of renewable energy projects by Colorado jurisdictions. Is this really needed?

A bill creating statewide standards for local governments in Colorado evaluating renewable energy projects is likely to be introduced in coming days or weeks. Is this a solution in search of a problem?

Very few local governments in Colorado have adopted regulations seen as onerous by energy developers. Pueblo County several years ago rejected a solar farm based on neighborhood opposition. They feared loss of views. Mesa County in January adopted a six-month moratorium on new utility-scale solar projects with the active support of at least one local solar company. Delta County commissioners at first rejected a solar farm on Garnett Mesa but the proponents made changes more acceptable to neighbors.

Colorado’s counties have not been hard-nosed about renewable energy. That point was made by State Sen. Byron Pelton, a former Logan County commissioner who represents much of northeastern Colorado and has a small cow-calf operation near Sterling.

In an op-ed published in the print edition of The Denver Post on Feb. 4 (not available online), he took a swing at the “Democrat majority and radical environmentalists” who would usurp local control in regulating renewable energy siting.

“Most proposed renewable energy projects are approved, and when proposals are denied, it’s for good reason,” wrote Pelton. “Those reasons range from environmental impact concerns and impact on agriculture and wildlife to inadequate benefits for the host community.”

Boulder County, he pointed out, led the way in using moratoriums to address local concerns.

“They imposed a five-year moratorium on oil and gas, giving them time to contemplate the best path forward for their community. None of the moratoriums imposed on renewable energy development have come anywhere close to approaching five years.”

On the same day Pelton’s op/ed was in the Denver Post, USA Today published a story: â€œUS counties are blocking the future of renewable.”

“At least 15% of counties in the US have effectively halted new utility-scale wind, solar or both,” the newspaper reported. The limits come in the form of outright bans, moratoriums, construction impediments and other conditions that make green energy difficult to build.”

The newspaper reported that 375 counties blocked new wind developments in the past decade compared to 183 counties who got them. Many were in Tennessee, North Carolina, and Kentucky, but also in Vermont. Maps published with the story show a couple of counties with wind restrictions on Colorado’s eastern plains, and several on the Western Slope, which have far less wind value. The chart also shows solar restrictions in several Colorado counties but provides no detail.

One common requirement in zoning rules intended to block new wind farms specifies the height of a turbine relative to adjacent property lines. Most new wind turbines in the U.S. are 500 feet or taller. Some counties require setbacks of 1,320 feet, 1,500 feet, a mile or, in some cases, 3 miles.

Colorado Public Radio in a Feb. 8 story reported that State Sen. Chris Hansen, D-Denver, said he intended to introduce a bill that would create a standardized process for local governments considering renewable energy projects. CPR’s Sam Brasch reported that an early draft of the bill also identified rules to restrict development of wind and solar farms and also transmission lines.

Hansen yesterday confirmed that he intends to introduce the bill in March.

A flashpoint for this lies in Washington County, which is in Pelton’s district. While county commissioners in Akron have welcomed the Colorado Power Pathway that crosses the county’s southern section, the county in 2021 also approved some of the state’s toughest regulations on renewable energy projects. CPR says those regulations require one-mile spacing between structures and new wind turbines.

The CPR story also cites a study from the Sabin Center for Climate Change Law that found local governments across 34 states have approved at least 228 restrictions on renewable energy development.

New York, California, and Illinois adopted legislation similar to that being drafted by Hansen to limit local control over renewable energy projects.

The World Is Losing Migratory Species at Alarming Rates — Inside #Climate News #ActOnClimate

Click the link to read the article on the Inside Climate News website (Katie Surma):

A first of its kind U.N. study by conservation scientists finds nearly half of internationally protected migratory species are on their way to extinction.

Humans are driving migratory animals—sea turtles, chimpanzees, lions and penguins, among dozens of other species—towards extinction, according to the most comprehensive assessment of migratory species ever carried out.

The State of the World’s Migratory Species, a first of its kind report compiled by conservation scientists under the auspices of the U.N. Environment Programme’s World Conservation Monitoring Centre, found population decline, a precursor to extinction, in nearly half of the roughly 1,200 species listed under the Convention on Migratory Species (CMS), a 1979 treaty aimed at conserving species that move across international borders.

The report’s findings dovetail with those of another authoritative U.N. assessment, the 2019 Global Assessment Report on Biodiversity and Ecosystem Services, that found around 1 million of Earth’s 8 million species are at risk of extinction due to human activity. Since the 1970s, global biodiversity, the variation of life on Earth, has declined by a whopping 70 percent.

Scientists and economists use complicated models to try to predict how fast the world can transition away from fossil fuels. The Washington Post analyzed 1,200 modeled pathways for the world to shift to clean energy and found that only four of them showed the world hitting the 1.5C target without substantially overshooting or using speculative technology (like large-scale carbon capture) that doesn’t yet exist. At this point, many experts believe that the economy is too stuck on fossil fuels to transition fast enough for 1.5 degrees.

Does that mean we’ll pass catastrophic tipping points?

Arctic Ocean. Photo credit: The European Commission

That’s a more difficult question. Scientists don’t know exactly when certain tipping points — like the collapse of the Greenland ice sheet or the release of greenhouse gases from thawing permafrost — will occur. It’s very hard to predict and model these types of catastrophic changes.

And 1.5C isn’t a magic threshold; it’s not as though as soon as we pass that number, Antarctic ice sheets will collapse and ocean circulations will grind to a halt. But one thing is certain: For every tenth of a degree of warming, tipping points are more likely. Two degrees is worse than 1.9 degrees, which is worse than 1.8 degrees, and so on.

And at each tenth of a degree, the infrastructure and systems that the world has built — electric grids, homes, livelihoods — will become more strained. Our modern world simply was not designed for temperatures this high. At some level, the final temperature of the planet isn’t what matters most. It’s where countries can actually get carbon emissions to zero — and stop contributing to future warming altogether.

Earth breached a feared level of warming over the past year. Are we doomed? The world still hasn’t missed its #climate goal — The Washington Post #ActOnClimate

Virga during a sunset. By Виктор АНоксоов – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=112499661

Click the link to read the article on The Washington Post website (Shannon Osaka). Here’s an excerpt:

It’s official: For the past 12 months, the Earth was 1.5 degrees Celsius higher than in preindustrial times, scientists said Thursday [February 8, 2024], crossing a critical barrier into temperatures never experienced by human civilizations. According to the European Union’s Copernicus Climate Change Service, the past 12 months clocked in at a scorching 1.52 degrees Celsius (2.74 degrees Fahrenheit) higher on average compared with between 1850 and 1900. At some level, that’s not surprising — the past 12 months have been scorching, as a warm El Niño cycle combined with the signal of human-caused warming generated heat waves and extreme weather events around the globe.

“This El Nino maximum is riding on top of a base climate that is continuously warming due to climate change,” Andrew Dessler, a climate scientist at Texas A&M University, said in an email. “The combination of them is what’s giving us such hot global temperatures.”

But does this mean that the world’s most famous climate goal is out of reach? Not … exactly. Here’s what you need to know:

In the 2016 Paris climate agreement, almost 200 nations agreed to keep the global average temperature from exceeding 2 degrees Celsius (3.6 degrees Fahrenheit) above preindustrial levels — and to “pursue efforts” to keep it below 1.5 degrees Celsius. The latter addition largely came from pressure from small-island states, who are at risk of disappearing under rising seas if temperatures get much higher. Scientists have shown that holding the temperature rise to 1.5C could mean the survival of coral reefs, the preservation of Arctic sea ice and less deadly heat waves…

Does this mean we have missed the 1.5C climate goal? No. There’s actually some disagreement about what exactly counts as breaching that threshold — but scientists and policymakers agree that it has to be a multiyear average, not a single 12-month period. Scientists estimate that without dramatic emissions reductions, that will happen sometime in the 2030s. But there could be other single years or 12-month periods that cross the line before then.

Can we still avoid passing 1.5C? Most scientists say passing 1.5C is inevitable. “The 1.5-degree limit is deader than a doornail,” Columbia University climate scientist James Hansen said in a call with reporters late last year.

Growing Rural Renewables — Colorado Farm & Food Alliance (@ColoFarmFood)

Vegetable harvest at an agravoltaic operation. Photo credit: Colorado Farm & Food Alliance

Click the link to read the blog post on the Colorado Farm & Food Alliance website:

February 11, 2024

What are agrivoltaics?

Agrivoltaics are the pairing of solar energy—also known as photovoltaics—and agriculture. Some experts think it offers solutions that can help renewables better integrate with rural livelihoods and might also provide some enhancements for farming as we head into a hotter, drier, less predictable weather future.

As an example,  Jack’s Solar Garden, on Colorado’s Front Range, has been a real leader modeling how agrivoltaics, farming and community can support each other.  And now, such systems are beginning to sprout on the Western Slope as well. 

As the need for fast deployment of renewables impacts rural communities, issues such as siting and who benefits become central concerns.

Smart co-location, including agrivoltaics where it makes sense, is one way to smooth the way for more clean energy to power farms and rural places. Community-solar is another way to ensure that communities are centered in the expansion of renewable energy. 

Row crops underneath solar panels. Photo credit: Colorado Farm & Food Alliance

Community-Solar can help put rural people at the center of the clean energy build-out.

Community-solar—think “solar garden”—is a shared solar system that provides a direct benefit from the power production at that facility to a group of community-based members or subscribers. Community-solar can increase energy equity by sharing the benefits of clean energy production and savings among a number of users, and can support the expansion of  renewables by putting more members from impacted communities in the driver’s seat. It often is used to assist households that otherwise would be unable to afford or obtain individual solar systems in benefiting from the growth of clean energy.

In Delta County, the Colorado Farm & Food Alliance is part of a team of local leaders bringing agrivoltaics together with community-solar in a project at Thistle Whistle Farm on Hanson Mesa, outside the town of Hotchkiss. The Thistle Whistle project got a kick-start last spring when the Colorado Farm & Food Alliance and the team were awarded a stage 1 Community Solar Power Accelerator Prize, sponsored by the National Renewable Energy Laboratory. That competition is still on-going even as the Thistle Whistle project proceeds.

Photo credit: Colorado Farm & Food Alliance

National Community Solar Prize spurs project along.

Project proponents hope the latest submission will unlock the stage 2 funding award this spring, keeping things on track to put a community-owned, farm-integrated energy system into operation before next year. In any case, the National Community Solar Partnership, which helps administer the competition through the Hero X platform, also provides in-depth training, technical assistance, and a supportive cohort that has already moved this project forward.

You can learn more about this project and the inspiration behind it on this episode of Crisis to Comeback, a podcast by Kori Stanton and Citizens for a Healthy Community. She interviews Mark Waltermire, owner of Thistle Whistle Farm and a western Colorado agricultural leader.

To  read more about how renewables can integrate with rural communities, check out this guest column by our director that recently ran in the Grand Junction Daily Sentinel: “Renewable energy: Get it right, but get it going”. And watch our blog, our social media, and in other outlets for updates as this and other projects progress.

Ignoring Indigenous rights is making the green transition more expensive — @Grist #ActOnClimate

Ancestral map of the Osage Nation shows their migration over a period of more than 1,000 years, towards the modern day territory in Northeast Oklahoma. Credit: The Osage Nation

Click the link to read the article on the Grist website (Anita Hofschneider):

February 2, 2024

“If you’re going to develop energy in the U.S. you’ve got to do it with the support of tribal communities.”

In December, a federal judge found that Enel Green Power, an Italian energy corporation operating an 84-turbine wind farm on the Osage Reservation for nearly a decade, had trespassed on Native land. The ruling was a clear victory for the Osage Nation and the company estimated that complying with the order to tear down the turbines would cost nearly $260 million. 

Attorneys familiar with Federal Indian law say it’s uncommon for U.S. courts to side so clearly with tribal nations and actually expel developers trespassing on their land. But observers also see the ruling as part of a broader trend: Gone are the days when developers could ignore Indigenous rights with impunity. Now, even if projects that threaten Native land and cultural resources ultimately proceed, they may come with years-long delays that tack on millions of dollars. As more companies look to build wind and solar farms or mine minerals for renewable energy, failing to recognize Indigenous sovereignty could make the clean energy transition a lot more expensive and much further away.

“I think tribes are starting to see that they have more leverage than they thought, and that they’ve previously exercised, over all this infrastructure that’s on their land,” said Pilar Thomas, an attorney, member of the Pascua Yaqui Tribe of Arizona and former deputy director of the Office of Indian Energy Policy and Programs at the U.S. Department of Energy. “They want to make sure that they’re getting their fair share.”

Rick Tallman, a program manager at Colorado School of Mines’ Center for Native American Mining and Energy Sovereignty who has spent more than two decades working on financing and consulting for clean energy projects, calls the Osage Nation ruling a wake-up call. 

“If you’re going to develop energy in the U.S. you’ve got to do it with the support of tribal communities,” he said.  

According to Tallman, investors don’t like uncertainty. He said a lot of infrastructure funders are very conservative and won’t back a project unless they are confident it will succeed, which includes getting the buy-in of affected Indigenous Nations. There’s no upper limit to how much the project could cost if investors don’t get it right. 

One analysis from researchers at First Peoples Worldwide at the University of Colorado at Boulder estimated that resistance to the Dakota Access Pipeline drove the project cost upwards of $7.5 billion. That includes more than $4.3 billion in divestment from banks backing the project and nearly $1.4 billion in additional operating costs, not to mention millions spent to hire law enforcement

Marion Werkheiser, founding partner of Cultural Heritage Partners, said the costs are so high that some renewable energy projects never even get off the ground, citing the Cape Wind project in Nantucket Sound that was opposed by members of the Wampanoag Tribe.

And it’s not just a U.S. trend; Indigenous peoples around the world are fighting to enforce their rights, especially the right to free, prior and informed consent to projects on their land–a concept enshrined in the United Nations Declaration on the Rights of Indigenous Peoples. However, the U.S. hasn’t codified that into law, and compliance globally is spotty. 

“Renewable energies are actually not that good in respecting Indigenous rights,” said Genevieve Rose from the International Work Group for Indigenous Affairs. “They have this feeling that because they bring up something good, something green, that they are automatically a good thing.” 

But her colleague David Berger said there’s more awareness and resistance from Indigenous peoples, and companies are being forced to factor in those costs. He pointed to Norway, where the state-owned company that developed an illegal wind farm has agreed to pay Indigenous SĂĄmi people about $675,000 every yearfor the next 25 years for violating their rights. “What’s good is you have that legal structure so communities can push back,” Berger said.

Wesley Furlong, an Anchorage-based senior staff attorney at the Native American Rights Fund, said more tribes are filing lawsuits in the U.S., partly because the legal landscape is changing. For example, the National Historic Preservation Act, a federal law managing the preservation of historic resources, has been around since 1966, but it was only in 1999 that the federal government codified regulations related to communicating with tribes about projects that affect them, and the rules weren’t fully in effect until 2004. Some tribes are just now learning about their rights. 

Another reason for the increase in lawsuits is because some tribal nations have more resources to fund litigation. “Indian gaming has been a game-changer for tribes to be able to raise revenue and hire attorneys,” Furlong said. 

That combination of more legal tools, more financial resources and more education about Native rights, Furlong said, has led to more tribes getting involved in energy developments on their traditional and ancestral territories, including lands with historic connections and are not owned by a tribe. And he only expects that to continue: Most of the U.S. reserves of lithium, copper, cobalt and nickel — metals key to the clean energy transition — are within 35 miles of Federal Indian Reservations, according to a study by the investment firm MSCI. 

That’s something renewable energy developers need to be aware of, said Thomas. “I am a staunch believer that if you are within spitting distance of a tribe that you should be engaged in outreach to the tribe,” she said. 

Not every project is going to get buy-in, she adds, but she encourages companies to have patience and continue to reach out to tribes even if they don’t respond. Furlong from the Native American Rights Fund said project proponents may erroneously assume that tribes will always be opposed, forgetting that tribal governments want what’s in the best interest of their citizens

Bottom line, it’s much less costly for companies to invest in tribal consultations and get them right from the get-go, says Daniel Cardenas, the head of the National Tribal Energy Association and a member of the Pit River Tribe who has consulted with tribes and companies regarding fossil fuel projects. “The cost of engagement is almost nothing compared to the cost of what they’re going to have to pay [if they don’t do it right],” he said of developers. 

Werkheiser has seen some progress, with some banks, insurance companies and energy developers adopting Indigenous peoples policies to guide their investments and some companies undergoing voluntary certifications to show their projects are ethical and respectful of Indigenous rights. “Financial institutions are recognizing that this is a real business risk and they’re building it into the cost of capital for these companies,” she said.

But overall, change is slow, she said. 

“For the most part, the renewable energy developers are repeating the mistakes that fossil fuels developers have made over the years,” she said. “They’re not engaging with tribes early as potential partners and information sources during their planning process, and they are basically deferring their own relationship with tribes to the federal government.”

That’s a mistake, said David Kane, a consultant who leads WindHorse Strategic Initiatives. Energy companies often mistakenly perceive tribal chairs as though they are the equivalent of small-town mayors, rather than recognizing them as heads of state. [ed. emphasis mine]

Because of that, he says companies often disrespect tribes from the beginning by sending lower-level representatives to liaise with them, and many companies may never even step foot on a reservation or go before tribal councils. Developers often complain that it takes a long time to build relationships with tribal members but Kane says it’s better to do so before projects get underway. 

“There’s still a lot of mistrust of white men and with good reason,” he said. And the energy industry, including renewables, he said, is still predominantly white and male.

Another challenge is that sometimes companies assume what will work with one tribe will work with another, said Cardenas from the National Tribal Energy Association.

“There’s 574 tribes, and each one operates differently and independently,” he said. “So if you know one tribe, you just know one tribe.”

He thinks tribal nations should be seen as partners, even sponsoring partners, with shared equity in the developments. There’s growing interest: Over the past two decades, tribal nations have pursued hundreds of clean energy projects, with the Inflation Reduction Act recently increasing funding for such projects.

But in the meantime, costly litigation continues. Last week in the U.S., four tribal nations sued a developer to prevent a $10 billion wind energy transmission line from going into operation. And in Oklahoma, the Osage Nation is now seeking damages from Enel. A judge still needs to decide how much that will cost the company. 

Get renewables right and get it going — Pete Kolbenschlag #ActOnClimate

Screenshot from the recently released Climate Change in Colorado Report update

From email from Pete Kolbenschlag:

In a world of often competing needs, sometimes it’s harder to find a common path forward than to simply plow one’s own. And when a project to be hurried along is for some greater good, then to steam through the process may seem warranted. This sometimes seems the case for calls to streamline clean energy development or to limit community input into new infrastructure. But shortcuts can make for long delays – and many an ambitious project runs into obstacles by not adequately involving impacted members of the public, who nonetheless will be heard. 

So the Sentinel is correct to call for clarity on utility-sized solar as it has in a recent editorial. Which was also on the mark noting that more solar is welcomed. The opportunity is here now to secure investments in a cleaner energy future. But that does mean that we have to get it right. 

Still, we shouldn’t delay. The need is real. How we power our lives and communities is quickly shifting and western Colorado should lead the way. It isn’t either/or. Siting of energy facilities and how they are integrated with the environment, farms, businesses and neighborhoods should always be a top concern. We must not repeat mistakes from our fossil fuel past when ecosystems and some communities were treated as sacrifice zones in the name of necessity. But we absolutely must transform our energy system and how we power our lives and economy.

Last February, my organization – the Colorado Farm and Food Alliance – issued its report on climate change in the Gunnison River Basin. Then 2023 happened. Last year is being widely reported as the hottest ever recorded as concentrations of greenhouse gasses in the atmosphere – notably CO2 – hit levels likely not seen for millions of years. Meanwhile extreme weather and other climate disruptions continued to reset expectations about scope, onset and frequency.  

Sure, there are still hold-outs who believe climate science is fiction and others who want hard to believe that some yet-unproven technology will allow the burning of methane-gas, oil and coal long into the future. But the economic, political and fact-based reality is that to a growing number of nations, decision-makers and institutions a rapid shift to clean energy is both necessary and inevitable. The data are clear: we must act with urgency and at scale if we are to address climate change. 

That doesn’t skip over the need to meet community needs and issues. Federal legislation has made new funding available to help speed the deployment of more renewables. And the Colorado legislature is considering legislation, and could do more, to help direct where and how this renewable build out occurs. Still, local governments, like county commissioners, should not wait. 

Taking effort to incentivize renewable projects that integrate with and benefit the communities where they are located is key. Not only for fairness but also to smooth development at the pace and scope required. The co-location of facilities, solar with agriculture for instance, or on rooftops and over parking lots, can help to mitigate some of the burden new development can place on others. Opportunities like workforce development programs, consumer cost savings, community-ownership are other outcomes that can and should be encouraged to make clean energy a win for the community as a whole, as well as for the climate.

One example is the agrivoltaics project the Colorado Farm and Food Alliance has been helping to steer in Delta County, that seeks to develop a community-rooted model for solar that pairs with and even benefits agriculture, putting more clean power on the grid while returning the cost-savings from production to its farm-based member-subscribers.

That is one place strong local leadership can help, in Mesa County and elsewhere, to guide where and how such projects are located. And state legislation can create stronger incentives to put more meaningful and community-centered benefits in renewable project design and power generation. For instance, by encouraging utilities, both investor-owned and rural cooperatives, to accept more community-solar on their systems, or making it easier to put solar production cost-savings directly on a consumer’s utility bill, as examples. 

But we need to act now. With federal funding from recent laws, a growing recognition of the challenge at hand, and a willingness to lead we can develop a new energy economy that supports western Colorado communities and livelihoods. We need a thoughtful but strong and steady approach that meets and matches community needs and promptly puts more renewable energy to work powering Colorado.

Five-year field study by Argonne and @NREL finds that strategic planting of native grasses and flowering plants at solar sites fosters growth in vegetation that attracts insect communities #solar #ActOnClimate

A solar-pollinator habitat, dominated by purple prairie clover and black-eyed susan flowering plants. (Image by Argonne National Laboratory/Lee Walston.)

Click the link to read the release on the Argonne National Laboratory website (Marguerite Huber):

January 17, 2024

Two solar facilities built on rehabilitated agricultural land were restored with native plants. Argonne researchers observed pollinators thrive.

Bumblebees buzz from flower to flower, stopping for a moment under a clear blue Minnesota sky. Birds chirp, and tall grasses blow in the breeze. This isn’t a scene from a pristine nature preserve or national park. It is nestled between photovoltaic (PV) solar arrays on rehabilitated farmland.

Researchers at the U.S. Department of Energy’s (DOE) Argonne National Laboratory and National Renewable Energy Laboratory wanted to understand the ecological value of PV solar energy sites planted with native grasses and wildflowers. They examined how vegetation would establish and how insect communities would respond to the newly established habitat. The five-year field study looked at two solar sites in southern Minnesota operated by Enel Green Power North America. Both sites were built on retired agricultural land.

Smart land use choices provide multiple benefits

Global insect biodiversity has been in decline due to habitat loss, pesticides and climate change. Restoration of insect habitat paired with smart land use changes toward renewable energy developments could help reverse the course.

For instance, as a carbon-neutral source of electricity, expanded PV solar energy development is critical to mitigating climate change. According to the DOE’s Solar Futures Study, approximately 10 million acres of land in the U.S. will be needed for large-scale solar development by 2050 in order to meet grid decarbonization and climate change goals. But some lands are better suited for PV solar development than others. Disturbed lands such as former agricultural fields are ideal locations to hold rows of solar panels compared to lands that have been previously undisturbed.

An Argonne scientist surveys for pollinators at a utility-scale solar facility. (Image by Argonne National Laboratory/Lee Walston.)

Even more strategies can be added to this winning combination to support insect conservation. Agrivoltaics is the combination of solar energy production with agricultural and vegetation management practices. One type of agrivoltaics focuses on the establishment of habitat for insect pollinators and other wildlife that can provide important ecosystem services, such as pollination. Pairing solar energy facilities on previously disturbed lands with habitat enhancement sounds like a logical win-win strategy to address energy and biodiversity challenges. To date, however, there has been little field data available to document the feasibility and the ecological benefits of this novel land use approach.

If you build it, will they come?

The two studied solar sites were planted with native grasses and flowering plants in early 2018. From August 2018 through August 2022, the researchers conducted 358 observational surveys for flowering vegetation and insect communities. They evaluated changes in plant and insect abundance and diversity with each visit.

“The effort to obtain these data was considerable, returning to each site four times per summer to record pollinator counts,” said Heidi Hartmann, manager of the Land Resources and Energy Policy Program in Argonne’s Environmental Sciences division, and one of the study’s co-authors. â€‹â€œOver time we saw the numbers and types of flowering plants increase as the habitat matured. [ed. emphasis mine] Measuring the corresponding positive impact for pollinators was very gratifying.”

By the end of the field campaign, the team observed increases for all habitat and biodiversity metrics. There was an increase in native plant species diversity and flower abundance. In addition, the team observed increases in the abundance and diversity of native insect pollinators and agriculturally beneficial insects, which included honeybees, native bees, wasps, hornets, hoverflies, other flies, moths, butterflies and beetles. Flowers and flowering plant species increased as well. Total insect abundance tripled, while native bees showed a 20-fold increase in numbers. The most numerous insect groups observed were beetles, flies and moths.

In an added benefit, the researchers found that pollinators from the solar sites also visited soybean flowers in adjacent crop fields, providing additional pollination services.

The benefits of solar-pollinator habitats 

A monarch caterpillar on a common milkweed leaf. (Image by Argonne National Laboratory/Lee Walston.)

“This research highlights the relatively rapid insect community responses to habitat restoration at solar energy sites,” said Lee Walston, an Argonne landscape ecologist and environmental scientist who was lead author of the study. â€‹â€œIt demonstrates that, if properly sited, habitat-friendly solar energy can be a feasible way to safeguard insect populations and can improve the pollination services in adjacent agricultural fields.” Walston also serves as head of the Ecology, Natural Resources, and Managed Systems department in Argonne’s Environmental Science division.

The research findings suggest two important implications of habitat-friendly solar energy. One is that habitat-friendly solar sites can play an important role in conserving biodiversity. Large amounts of ground-mounted solar is expected to be developed in the future, but if properly sited, habitat-friendly solar can offset the losses of natural areas to provide biodiversity benefits. Second, habitat-friendly solar sites can help mitigate land-use conflicts associated with the conversion of farmland for solar energy production. As approximately 80% of future ground-mounted solar development could occur on agricultural lands, the proper siting of habitat-friendly solar energy on marginal farmland can not only preserve prime farmland, but it could make prime farmland more productive through the pollination services provided by habitat-friendly solar energy.

Overall, additional research is needed to understand the feasibility of habitat-friendly solar across different regions and to meet different ecological goals such as conserving a target insect or wildlife species.

Funding was provided by the InSPIRE project through the DOE Office of Energy Efficiency and Renewable Energy’s Solar Energy Technologies Office.

Analysis: World will add enough renewables in five years to power US and Canada — Carbon Brief #ActOnClimate #KeepItInTheGround

Click the link to read the article on the Carbon Brief website (Josh Gabbatiss):

January 12, 2024

A boom in Chinese solar power construction drove another record-breaking year of renewables growth in 2023, according to the International Energy Agency (IEA).

Carbon Brief analysis of figures in the IEA’s Renewables 2023 report show that the world is now on track to build enough solar, wind and other renewables over the next five years to power the equivalent of the US and Canada.

Rapid growth has also pushed the IEA to once again significantly upgrade its renewables forecast, adding an extra 728 gigawatts (GW) of capacity to a five-year estimate it made just a year ago. This is more than the electricity capacity of Germany and India combined.

The agency attributes this growth to plummeting costs of solar power and favourable policy regimes, particularly in China. New solar and onshore wind now provide cheaper electricity than new fossil fuel power plants almost everywhere, it says, as well as being cheaper than most existing fossil fuel assets.

Despite such accelerated expansion, the world is not currently on track to achieve the COP28target of tripling renewables capacity by 2030, according to the IEA.

However, it proposes various measures to further increase deployment, including more finance for developing countries.

‘Step change’

Last year was a “step change for renewable power growth” as the world built an extra 507GW of renewable capacity, primarily solar and wind power, according to the IEA.

This was a 49% increase on the previous year’s construction. It marked the 22nd year in a row that renewable capacity addition reached record levels.

Over the six-year period 2023-2028, an additional 3,684GW of renewables is expected to come online under the IEA’s “main” forecast. This is double the current total of renewable capacity installed globally.

In 2023, solar power both at utility-scale and on rooftops amounted to three-quarters of capacity additions, primarily due to growth in China. Over the next five years, 73% of the 3,174GW of new capacity will be solar, again driven largely by China. (See: China leads.)

By Carbon Brief’s calculations, this 2024-2028 period is on track to see an extra 4,963 terawatt-hours (TWh) of electricity generation from renewable sources.

This amounts to one-sixth of the world’s electricity output in 2022. As the chart below shows, this is equivalent to covering the entire electricity demand of the US and Canada with newly-built renewables.

Electricity generation in 2022 (dark blue) from key fuel sources and countries, terawatt-hours (TWh). Red bars indicate estimated electricity generation from the renewables built in 2019-2023 and set to be built in 2024-2028, according to the IEA’s “main case” forecast. Source: Carbon Brief analysis by Simon Evans of figures from the IEA Renewables 2023 and Renewables 2022 reports, the IEA world energy outlook 2023 and the Ember data explorer.

By 2028, the IEA forecasts that renewables will account for 42% of global electricity generation, with wind and solar power making up 25%. Despite showing no growth across this period, hydropower is still expected to be the largest single source of renewable power.

Taken together, the agency says renewables will overtake coal power as the largest source of power in “early 2025”. (A year ago, the agency said renewables would become the world’s largest electricity source within three years.)

One major driver of this growth is the plummeting cost of renewables, especially solar photovoltaics (PV). Spot prices for solar modules declined by almost 50% in 2023 compared to the previous year, according to the IEA.

Last year, 96% of newly installed utility-scale solar and onshore wind capacity generated cheaper electricity than new coal and gas plants, according to the IEA.

Moreover, three-quarters of new wind and solar power plants provided cheaper power than even existing fossil-fuel facilities.

The other key driver is the strong policy support that renewables enjoy in “more than 130 countries”, the IEA says. It notes that “policies remain key for attracting investment and enabling deployment”, with roughly 87% of the utility-scale renewable growth between 2023 and 2028 “expected to be stimulated by policy schemes”.

At the same time, the report highlights the impact of the “new macroeconomic environment” on the renewables sector, with inflation and high interest rates raising costs. Offshore wind has been hardest hit, with the IEA’s forecast for its growth outside China dropping by 15%.

The report also examines renewable heat consumption and the use of biofuels. Both are set to grow considerably in the coming years, but the IEA says neither are currently on track for the trajectories seen in its net-zero scenario, which aligns with the Paris Agreement.

Record revision

As a result of this growth, the IEA has again significantly raised its forecast for renewables capacity expansion, by a record amount.

It now sees an additional 728GW being built in the 2023-2027 period compared to its forecast from 2022 – a 33% increase. This is notable considering that, last year, the agency described a five-year 424GW adjustment as its “largest ever upward revision”.

The chart below shows the 120GW divergence between actual renewables growth in 2023 – some 507GW – and the forecast for that year of 387GW, made by the IEA in 2022.

Annual additions of renewable capacity (dark blue), with forecasts from 2022 (light blue) and 2023 (dark blue). The 2023 is based on the IEA’s “main case”. Unlike in previous IEA reports, solar power data for all countries has been converted to direct current (DC), increasing capacity for countries reporting in alternating current (AC). The 2022 forecast data has been converted to allow comparison. Source: Carbon Brief analysis of figures from the IEA Renewables 2023 and Renewables 2022, and historical data from the IEA.

The IEA has a long history of making relatively conservative predictions for renewable growth that are subsequently outstripped by reality, due to a combination of more favourable policy conditions and faster-than-expected cost reductions.

Forecasts from previous IEA renewables reports issued in 2020 and 2021 showed annual renewable growth rates remaining fairly stable at around 200GW and 300GW per year for the following five years, respectively. 

However, these forecasts have not been included in the chart above as, for the first time, the agency has converted all of its solar power values to direct current, resulting in slightly different GW values. This means previous forecasts are not directly comparable, although the 2022 forecast figures have been converted for this purpose.

China leads

A key conclusion from the IEA’s new report is the global dominance of China in deploying solar and other renewables, which is set to increase in the coming years.

In the period 2005-2010, China built 39% of the world’s new renewable energy capacity. This increased to 47% in the 2017-2022 period and the IEA expects it to rise to 59% between 2023 and 2028. This can be seen in the chart below.

By 2028, the agency estimates that nearly half of China’s electricity will be generated by renewables. According to Ember, as of 2022 only around 30% of China’s electricity was from renewables.

During this period, the nation is set to deploy four times more renewables than the EU and five times more than the US.

Total renewable electricity capacity growth across six-year periods, including the forecasted growth under the IEA’s “main case” for 2023-2028. Growth in China is red and growth in the rest of the world is dark blue. Source: IEA Renewables 2023.

This growth is being driven by the nation’s success in solar power manufacture and installation, according to the IEA. In “almost all provinces”, generation costs for new utility-scale solar and onshore wind are now lower than for coal, which is generally used as the benchmark for electricity prices, the agency says.

The IEA attributes this progress to policy measures, including power market reforms, green certificate systems and province-level financial support to support rooftop solar installation. It also points to a “supply glut” that has helped solar module costs “plummet drastically”.

As China accounts for 90% of the upwards revision in the IEA’s forecast out to 2028, it notes that the nation’s solar achievements actually “hide slower progress in other countries”.

There have been a number of significant supportive policy changes in other countries and regions, however. 

The US and the EU are expected to see renewable installation rates double across 2023-2028, compared to the previous six-year period – in both cases due primarily to solar expansion. The IEA attributes this to the US Inflation Reduction Act and supportive national policies â€“ such as government renewable power auctions â€“ across European nations.

The report also highlights the success of supportive policies in India and Brazil. It notes that while renewables are set to expand rapidly in sub-Saharan Africa – particularly South Africa – the region “still underperforms considering its resource potential and electrification needs”.

Tripling renewables

At COP28, nearly every government in the world agreed to a target of tripling global renewables capacity by 2030. This would bring the total to 11,000GW, which is in line with the IEA’s own net-zero scenario.

As it stands, the new report concludes that under the IEA’s “main case” forecast, shown in yellow in the chart below, renewable capacity would increase to 7,339GW in 2028. 

Following that trajectory, capacity would reach around 9,000GW in 2030 – roughly an increase to 2.5 times current levels.

This forecast is based on existing policies and takes into account “country-specific challenges that hamper faster renewable energy expansion”, the IEA says.

By contrast, the IEA’s “accelerated case” involves governments “overcom[ing] these challenges and implement[ing] existing policies more quickly”.

In this scenario, shown in red below, renewables growth is around 21% higher. Capacity increases to 8,130GW in 2028, putting the world on track for the tripling by 2030 target.

Global renewables capacity growth under the “main case” (yellow) and “accelerated case” (red) forecasts laid out by the IEA. The light blue bar shows the 2022 baseline on which the “tripling renewables by 2030” target (dark blue) is based. Source: IEA Renewables 2023.

The IEA lists a handful of broad measures that governments could take to achieve an “accelerated” trajectory. 

These include: improved policy responses to the “new macroeconomic environment” such as higher inflation; more investment in grid infrastructure; and dealing with “cumbersome administrative barriers and permitting procedures and social acceptance issues”.

The IEA notes that “the lack of affordable financing remains the most important challenge to renewable project development in most EMDEs [emerging markets and developing economies], especially in countries where renewable policy uncertainties also increase project risk premiums”.

It emphasises the need to boost financing for EMDEs to overcome this barrier. Last year, renewable growth was concentrated in just 10 nations and tripling renewables requires “a much faster deployment rate…in numerous other nations”, the IEA says.

A solar farm off CO 17 in Alamosa County. Photo credit: Owen Woods/Alamosa Citizen

Energy Guru Says Energy Gap Can be Bridged — Writers on the Range #ActOnClimate

Click the link to read the article on the Writers on the Range website (David Marston):

January 22, 2024

The experts tell us an energy gap looms. Fossil fuels are phasing out, and solar and wind power can’t produce enough electricity to meet the demand in coming decades.

But that’s not the thinking of Amory Lovins, the 76-year-old co-founder of RMI, formerly the Rocky Mountain Institute in western Colorado.

A Harvard and Oxford dropout who’s been called the “Einstein of Energy Efficiency, Lovins said recently: “If we do the right things, we’ll look back and ask each other, ‘What was all the fuss about?’”

Lovins became famous in the 1970s after his research told him that building more polluting coal-fired power plants was a destructive mistake. His solution then was greater efficiency and reliance on renewables, and they, he insists, are still the answer.

“Though it’s invisible, efficiency will cut 50% of energy use and up to 80% if we do the right things,” he told me recently. “Most of the energy we use is wasted, which makes it much cheaper to save it, rather than buy it or burn it.”

According to a recent Princeton paper, he’s right: 84% of all energy consumed goes to waste during delivery or by leakage.

To prove it decades ago, he built a passive solar, super-insulated house at 7,100 feet of elevation in Old Snowmass, Colorado. It never had a heating system though winters regularly recorded 40 degrees below-zero temperatures.

When I arrived there recently at 8 a.m. it was 12 degrees F. Yet the house featured banana and papaya trees growing in natural light around a koi pond.

We became acquainted when he read my January 2023 Writers on the Range column entitled; “The energy gap nobody wants to tussle with.” I’d advocated building small modular nuclear reactors to bolster the grid when the wind doesn’t blow and the sun doesn’t shine.

The Crossing Trails Wind Farm between Kit Carson and Seibert, about 150 miles east of Denver, has an installed capacity of 104 megawatts, which goes to Tri-State Generation and Transmission. Photo/Allen Best

Lovins became famous in the 1970s after his research told him that building more polluting coal-fired power plants was a destructive mistake. His solution then was greater efficiency and reliance on renewables, and they, he insists, are still the answer.

“Though it’s invisible, efficiency will cut 50% of energy use and up to 80% if we do the right things,” he told me recently. “Most of the energy we use is wasted, which makes it much cheaper to save it, rather than buy it or burn it.”

According to a recent Princeton paper, he’s right: 84% of all energy consumed goes to waste during delivery or by leakage.

To prove it decades ago, he built a passive solar, super-insulated house at 7,100 feet of elevation in Old Snowmass, Colorado. It never had a heating system though winters regularly recorded 40 degrees below-zero temperatures.

When I arrived there recently at 8 a.m. it was 12 degrees F. Yet the house featured banana and papaya trees growing in natural light around a koi pond.

We became acquainted when he read my January 2023 Writers on the Range column entitled; “The energy gap nobody wants to tussle with.” I’d advocated building small modular nuclear reactors to bolster the grid when the wind doesn’t blow and the sun doesn’t shine.

Lovins called to set me straight, and after a second conversation and more research, I’m beginning to think he’s right.

Though Lovins has many solutions for the energy gap, he touts three major ways to find more energy in what we already do. Tops on the list is changing how we build and retrofit existing structures because buildings consume 75% of the electricity we buy.

Most energy jobs in the United States are already increasing efficiency, ranging from upgrading windows and other retrofits, far outpacing the shrinking fossil fuels industry. (energy.gov)

As one example, Lovins advocates “outsulation” for older structures, defined as adding exterior insulating panels to save heat. Courtesy of the European Union, my Irish in-laws recently had their house “wrapped” and saw their heating bills plummet.

His second way is demand-response, which Lovins calls flexiwatts. An example is cycling air conditioners off for 15-30 minutes at a time, a barely noticeable adjustment that cuts demand for peaker-power plants, those big emitters of greenhouse gases. 

His third way is using renewables more effectively. Diversifying renewables by location and type within a region evens gaps from windless and cloudy weather.

Coyote Gulch’s shiny new Leaf May 13, 2023

As for electric cars being a drain on the grid, they will prove to be sources of electricity, he said, as the next generation batteries will be cheaper and likely have double the storage. Daytime solar stored in vehicles will be bi-directional, spooling out power during peak evening demand.

Lovins also cites LED lights dramatically cutting the cost of energy. In just a decade, they’ve become 30 times more efficient, 20 times brighter and 10 times cheaper.

Lovins is quick to admit that an energy gap remains, but he predicts a single-digit gap—6%—between what renewables produce and what’s needed. That, he said, can be made up by stored, green hydrogen or ammonia, manufactured from water and air with solar energy, and burned in existing gas plants.

As for nuclear power plants, Lovins said even the best-case scenarios for the next generation of nuclear generators are at least a decade away, and at least eight times more costly than renewables today.

“It’s better to use fast, cheap and certain rather than slow, costly and speculative,” he said.

Though cutting loose from fossil fuels is a massive undertaking, Lovins said America is on track. “We are on or ahead of schedule on renewables, with 85% of net new additions to the grid from renewables, and $1 billion invested in solar in the United States daily.”

For these reasons and more, Lovins sees our energy future as more of what we’re already doing—only smarter and faster. [ed. emphasis mine]

Let’s hope that he’s right. Dave Marston is the publisher of Writers on the Range, writersontherange.org, an independent nonprofit that exists to spur lively dialog about the West. He lives in Durango, Colorado.

Denver Water’s administration building is powered by solar panels. Photo credit: Denver Water.

About that FB EV-bashing meme — Jonathan P. Thompson (@Land_Desk) #ActOnClimate

The Bingham Canyon Copper Mine in Utah, one of the planet’s largest human-made excavations. Jonathan P. Thompson photo.

Click the link to read the article on The Land Desk website (Jonathan P. Thompson):

January 10, 2024

Perhaps you’ve seen the latest viral Facebook meme about the ungodly amount of mined material needed to manufacture an electric vehicle. If not, you’ve probably seen one like it, maybe bashing EVs, maybe solar panels or wind turbines or some other clean energy technology (often accompanied by a gory image of a purported lithium mine). The implication is always the same: That “green” technology you’re so fired up about isn’t green at all — in fact, it’s destroying the earth. 

Normally I wouldn’t give these things a second thought. After all, they are memes, which by their very nature are simplistic and aimed at triggering the most primal emotional response, usually some flavor of fear. 

But this particular one — an inventory of the many tons of ore that must be mined to produce the materials in a Tesla model Y battery — has been especially infectious, it seems, and has made its way onto many of my social media pals’ feeds. Some of my friends have used it to argue against purchasing an EV, others have rightly questioned its veracity, while still others have posted counter-memes debunking it. 

Since the Land Desk covers lithium mining and other impacts of the clean energy transition, I figured I’d use this meme — circulated by someone named Jackie — as an opportunity to add some context. That’s because, regardless of whether the meme is accurate or not, it does bring up an important question: Are electric vehicles merely an instance of problem shifting, or transferring the equivalent environmental impacts from one technology to another? 

The post in question, let’s call it Jackie’s Meme, claims that 250 tons of earth must be moved to obtain the lithium, nickel, manganese, and cobalt in a typical EV battery, and a Caterpillar 994A used for this purpose would burn about 264 gallons of diesel in 12 hours, offsetting the carbon emissions reductions you’d get from driving the car.

These are certainly eye-opening numbers, even if they are a bit off (I came up with a figure of 69 tons of material moved, not 250, but more on that later). But they are also irrelevant in isolation, since the only thing we can conclude is that manufacturing an EV requires mining, just like mining was required to produce the laptop I’m writing this on, the desk it’s sitting atop, and the data center responsible for delivering the information to you. In other words, building an EV has an impact on the environment, maybe even a big one. 

Coyote Gulch’s shiny new Leaf May 13, 2023

But you don’t buy an EV because it’s good for the environment. You buy it because it’s less bad for the environment than a conventional vehicle (and for other reasons, such as performance, fuel savings, and so forth). Without including a comparison of how much material and mining is needed for a conventional vehicle vs. an electric one, the meme is useless, meant only to scare people away from doing anything.

And that may have been the intent. But another reason for the omission is that accurate apples to apples comparisons of the total amount of mined material needed for an average ICE vehicle vs. an average EV are hard to find. That said, we do know that EVs generally are heavier than their gas-powered counterparts due to the large, dense batteries (although they have far fewer moving parts). And we do know that EVs require far more of certain minerals, such as lithium, cobalt, nickel, and copper. 

This IEA graphic is a good one for those particular minerals:

Source: International Energy Agency

Manufacturing an electric vehicle, then, requires about six times as much of the listed materials as a conventional car. I suspect this disparity might shrink somewhat if steel (iron), aluminum, and molybdenum were also included, but it wouldn’t change the basic fact: EVs are more mineral intensive than ICE cars. 

And whether the mineral is steel or nickel, cobalt or platinum, extracting it requires moving, hauling, milling, and smelting huge amounts of rock to get a relatively minuscule amount of target mineral. That’s why the Bingham Copper Mine near Salt Lake City is 2.5 miles wide and nearly 4,000 feet deep. And the more rock and ore you mine, the larger the volume of waste, or tailings and waste rock and, generally speaking, the greater the environmental impact1. Here’s a great graphic showing the ratio of total material moved to ore mined to commodity produced: 

From the Energy Transitions Commission. Hat-tip to Hannah Ritchie’s excellent Sustainability by the Numbers newsletter for pointing me to this resource.

Jackie apparently used this sort of math to get to the 250-tons figure. I think she’s off: using the IEA figures and the above graphic, I find that an EV would actually require moving about 69 tons of earth. But when you’re talking dozens of tons, it doesn’t really matter that much. Jackie’s point still stands: You’ve gotta mine a lot of stuff to make an EV.  

So, go ahead, buy that gasoline guzzler and feel good about it. You’re doing the planet a favor! 

Just kidding. 

Sure, maybe when they come out the factory door, a new EV has a larger environmental footprint than its gasoline-powered counterpart. But once you start driving the things, the gasoline car’s impact grows at a much faster rate than the EV’s because of, well, gasoline. 

Let’s say you live in New Mexico, and drive your car about 14,400 miles per year (the average for the state per registered vehicle), and you have an average car that gets about 22 miles per gallon. You’ll burn through 654 gallons of gasoline and your tailpipe will spew out about 6.4 tons of climate-warming carbon dioxide each year, along with a nasty cocktail of health-harming and smog-forming pollutants such as sulfur dioxide, carbon monoxide, nitrogen oxides, benzene, and particulates.

That’s on top of the impacts of drilling for the oil from which the gasoline is derived. Drilling and hydraulic fracturing a single well can use 10 million gallons or more of fresh water. The 1,300 gallons of crude oil needed to produce your car’s annual gasoline use will be accompanied by as much as 7,800 gallons of briney, contaminated wastewater that must be disposed of — often in deep injection wells that can trigger earthquakes. Planet-warming methane, along with harmful volatile organic compounds, can spew from oil wells, pipelines, and refineries. Pipelines rupture regularly, spilling wastewater, oil, or diesel â€” sometimes they even explode. And petroleum refineries are major pollution sources as well. 

Electric vehicles don’t have tailpipes, so you’re not polluting the neighborhood by driving one around2. Yes, electric vehicles must be charged, and yes, some of that electricity is likely to be generated by burning fossil fuels, which requires extraction and creates pollution and other environmental impacts. But EVs generally are more efficient than gasoline powered cars, especially the gargantuan SUVs Americans are so enamored with, so even if you charge on a natural gas-generation-dominated grid you’re likely emitting less carbon per mile. Study after cradle-to-grave study has found that EVs have lower emissions over their lifecycle than their gasoline-powered counterparts, even when battery production3 and raw material mining is accounted for.

This is a Euro-centric graph from Carbon Brief, but it gets the point across. And believe me, an average “Euro car” is likely far more efficient than an average U.S. conventional car. Source: Carbon Brief.

EVs’ environmental advantages will continue to build as the electricity grid is further decarbonized and fossil fuel generation is displaced by solar, wind, geothermal, small hydropower, and nuclear. Large-scale battery recycling efforts are ramping up, which will reduce the amount of mining needed to build the things, and battery technology is advancing: They are becoming more energy dense and new lithium-, cobalt-, and nickel-free batteries are being developed. Researchers and startups are working to extract lithium from geothermal brine, allowing them to generate electricity and produce battery materials in one shot. And some hardrock mining operations are electrifying their haul trucks and other equipment and building solar arrays to power operations.

The upshot: If you need to purchase a new vehicle, and you’re trying to choose between an electric one or a gasoline-powered one, the EV probably would be a better choice for the environment over the long haul — regardless of the scare-memes. 

Still, even that meme serves a purpose: It reminds us that we won’t get out of this mess by producing and consuming more stuff, no matter how “green” it may be. [ed. emphasis mine] Simply clogging up the roads with electric vehicles, blanketing the deserts with solar panels, building new dams, or filling our homes with “sustainable” goods won’t solve the problems created in the first place by overconsumption and waste. Economic and cultural systems must be overhauled or even overthrown. And the incessant hunger for more, more, more must be tempered at last.

The Need for Smart Energy Siting in the West: Harnessing Abundant Resources while Protecting Habitats — Western Resource Advocates #ActOnClimate

Wind Turbine in Colorado. Photo credit: Western Resource Advocates

Click the link to read the article on the Western Resource Advocates website (Severiano DeSoto):

December 11, 2023

As the West pushes toward its ambitious climate goals, the delicate balance between clean energy development and land conservation has become paramount. While WRA and environmental advocates have passed legislation and won commitments that put electric utilities on track to reduce emissions, advance clean cars and trucks, electrify buildings, and decarbonize gas utilities, this requires more clean energy than ever before. To be successful in meeting these goals, we must focus on the next step in this process — where to place clean energy infrastructure through smart energy siting.

As WRA’s energy siting policy advisor, I work at the critical nexus of the climate and biodiversity crises in the Interior West. I bring a unique perspective and experience to this role, too. I joined WRA as a clean energy policy fellow, working with our Clean Energy team to identify federal funding opportunities to advance climate change solutions. Now, as a part of the Western Lands team, I pull from that experience to help craft balanced policy solutions that advance WRA’s clean energy goals while ensuring the build-out of new clean energy projects does not exacerbate habitat loss or place development on important natural and working lands.

Right now, the major focus of my work is on Colorado. Building the clean energy projects necessary to meet the state of Colorado’s ambitious climate goals will require a significant amount of land for wind and solar energy production, the largest driver of new land use change in the coming decades. To meet this need in a manner that does not exacerbate habitat loss and accelerate further loss of biodiversity requires a new approach to development planning.

WRA advocates for a smart energy siting approach that not only looks at the climate benefits of new clean energy projects but also accounts for the carbon impacts of land use change, ensures that conservation values are incorporated in the location and design of a project, and directly benefits host communities.

When done thoughtfully, new clean energy projects can provide the energy we need for a prosperous economy while minimizing the impact of these large projects on wildlife and ecosystems and provide direct economic benefits, from increased tax revenue to good paying jobs, in host communities. A smart energy siting approach assesses all these factors to maximize the benefits of new development and minimize conflicts that can often slow or stall projects.

.GIF credit: Western Resource Advocates.

WRA, as part of the Colorado Energy Siting Coalition, has been working over the last year to develop, advocate for, and implement a siting policy framework that ensures new clean energy projects in the state follow a smart siting approach to meet the states climate and conservation goals. WRA is a founding member and has been helping to coordinate the Coalition’s efforts to understand the perspectives of stakeholders across the state that are driving, or will be impacted by, the clean energy transition. We are also providing policy research and analysis to develop a policy framework that meets Colorado’s diverse needs and considerations. 

Given the state’s abundant clean energy resources, ambitious climate goals, and natural heritage, WRA believes Colorado can be a national leader in smart energy siting policy that minimizes conflicts with wildlife and accelerates the clean energy transition to address climate change. And this transition to a clean energy economy will touch all parts of the state. 

To better understand the various perspectives across the state, the Coalition held several rounds of stakeholder meetings to understand and address disparate needs. This outreach and engagement process culminated in October with a Clean Energy Siting Summit that brought together over 80 stakeholders from across the state to learn from one another and co-develop policy solutions to promote smart energy siting for Colorado.  

Participants included local and state government officials (county commissioners, state legislators, state agency directors and their staff, and the Governor’s policy advisors), renewable energy developers, electric utilities and co-ops, clean energy trade alliances, and environmental justice, conservation, agricultural, and wildlife organizations. This broad group, working altogether and in small groups, assessed policy options focused on: 

  • Balancing state and local authority;  
  • Providing resources to local governments;  
  • Integrating environmental protections;  
  • Facilitating public engagement and establishing and defining community benefits;  
  • Streamlining and expediting the permitting process.  

Building on the momentum of the summit and the ideas and perspectives shared, the Coalition is working to synthesize this information and incorporate the various considerations of stakeholders into a policy framework proposal that WRA and the Coalition will advocate for during the 2024 legislative session.  

The amount of wind and solar energy needed to meet Colorado’s energy needs and reduce greenhouse gas emissions in line with science-based targets will require a significant amount of land. According to recent modeling by the Colorado Energy Office, the state will need to build approximately 12.5 gigawatts of wind and 12.5 gigawatts of solar capacity over the next two decades to meet this goal. If not properly planned for, this will cause irreparable harm to Colorado’s wildlife, natural habitats, and important agricultural lands. The good news is, according to the best available science, we can achieve both our clean energy goals and protect important natural and working lands.

Accomplishing a just and equitable transition that occurs fast enough to address climate change is no small task. WRA and the Coalition recognize that to meet the moment – and this challenge – will require a thoughtful, smart approach to siting clean energy projects that incorporates conservation and community priorities. To do this we must ensure that all those driving or being impacted by the clean energy transition – including communities that have been previously left out of the decision-making process – are able to shape the transition and that the rights of nature and wildlife are protected.

Addressing the climate and biodiversity crises requires new, thoughtful approaches to meeting our energy needs, reducing emissions, and conserving and protecting the natural landscapes that make Colorado unique. During the upcoming legislative session, WRA will be challenging legislators to institute this critical balance into law.  

Biden-Harris Administration Announces Nearly $6 Million for Innovative Solar Panel Installation Over Canals in #GilaRiver Indian Community #ActOnClimate

Photo credit: U.S. Department of Interior

Click the link to read the article on the Department of Interior website:

Projects funded from President Biden’s Investing in America agenda will generate renewable energy, increase water efficiency 

December 8, 2023

The Biden-Harris administration today announced $5.65 million from President Biden’s Investing in America Agenda for the Gila River Indian Community in Arizona to construct and install solar panels over the Casa Blanca Canal. Acting Deputy Secretary Laura Daniel-Davis and Bureau of Reclamation Commissioner Camille Calimlim Touton celebrated the investments with the Gila River Indian Community today.  

“President Biden’s Investing in America agenda is unlocking resources for new and innovative ways to combat the climate crisis, including simultaneously generating renewable energy and increasing water efficiency,” said Acting Deputy Secretary Laura Daniel-Davis. “In partnership with local stakeholders, the Interior Department will continue to invest in essential water infrastructure projects that mitigate the worst impacts of climate change and invest in communities across the country.”  

“We look forward to working with the Gila River Indian Community on this novel idea to conserve water and generate renewable energy with funding from President Biden’s Inflation Reduction Act,” said Reclamation Commissioner Touton. “Reclamation is working hard on projects that support water conservation and energy efficiency. This project will help inform similar projects to better understand their impacts and make that information publicly available so that we can all understand the scale and corresponding benefits they provide.”

Solar panels placed over canals have the potential to create several significant benefits, including:  

  • Generating renewable energy; 
  • Reducing evaporation losses of the canal; 
  • Increasing efficiency and production of solar panels because of the cooling effect of the water beneath the panels; 
  • Creating land savings for open space and agricultural use; 
  • Reducing facility maintenance by mitigating algae and/or aquatic plant growth; and 
  • Reducing the energy footprint and carbon emissions required to operate and maintain the facility. 

The Department of the Interior’s Bureau of Reclamation will work with the Gila River Indian Community to cover 2,782 linear feet of the Casa Blanca canal with approximately 2,556 solar panels. The solar panels are expected to generate 1.31 megawatts of clean energy, providing 2.26 million kilowatt-hours of annual electricity to the Gila River Indian Community. This pilot will serve as a five-year study period and provide important information for future solar projects over canals and for the Gila River Indian Community as they seek to include solar panels over 18.5 miles of canal.  

President Biden’s Investing in America agenda represents the largest investment in climate resilience in the nation’s history and provides much-needed resources to enhance Western communities’ resilience to drought and climate change. The Inflation Reduction Act made available $25 million for the design, study and implementation of projects to cover water conveyance facilities with solar panels. Today’s announcement is the first award of this funding, with more expected in the coming months.  

Through the Bipartisan Infrastructure Law, Reclamation is also investing $8.3 billion over five years for water infrastructure projects, including rural water, water storage, conservation and conveyance, nature-based solutions, dam safety, water purification and reuse, and desalination. Over the first two years of its implementation, Reclamation selected 372 projects to receive almost $2.8 billion.

This funding is also advancing President Biden’s Justice40 Initiative, which aims to ensure that 40 percent of the overall benefits of certain climate, clean energy, and other federal investments flow to disadvantaged communities marginalized by underinvestment and overburdened by pollution.

Tri-State Generation &Transmission’s plans for its #coal plants — Allen Best (@BigPivots) #ActOnClimate #KeepItInTheGround

Craig Station. Photo credit: Allen Best/Big Pivots

Click the link to read the article on the Big Pivots website (Allen Best):

December 1, 2023

Wholesale power provider for 42 electrical cooperatives hopes for federal help as it pivots from coal-heavy portfolio during the next few years.

In planning for the years 2026-2031, Tri-State Generation and Transmission wants to hasten its exits from two coal plants and add a ton of new wind and solar generation plus battery storage. This is to supplemented by new electrical production from natural gas.

The electric resource plan is to be filed with the Colorado Public Utilities by 5 p.m. [December 1, 2023]. However, these details were obtained by Big Pivots from a memorandum sent to members of the Colorado Solar and Storage Association. Important details were confirmed by other stakeholders.

Two accelerated coal plant retirements will be identified in the PUC filing. At Craig, in northwest Colorado, the utility proposes to advance the retirement of its last coal-burning unit to no later or earlier than Jan. 1, 2028, two years earlier than is currently the plan.

The proposal also calls for retirement of Springerville Unit 3, a 400-megawatt coal-burning unit in Arizona. Tri-State had not previously announced plans for retiring the plant, in which it holds a 51% interest, according to a September 2023 Securities and Administration filing. The proposal calls for a retirement no later than Sept. 15, 2031, but leaves the door open for a sooner date.

Tri-State does not see getting out of fossil fuels. It will retain an interest in a coal plant near Wheatland, Wyo., called Laramie River Station.

It also proposes to augment its existing natural-gas-burning fleet with a combined-cycle gas plant. That plant could also be coupled with carbon capture and sequestration technology. Tri-State has 8 member cooperatives in Wyoming in addition to 18 in Colorado, with others in New Mexico and Nebraska. Tri-State has significant transmission across the four-state region.

Not least, Tri-State proposes to add 1,240 megawatts of new renewable generation plus 210 megawatts of energy storage in four installations.

Many of these ambitions depend almost entirely upon federal funding to buy down debt on assets stranded as the United States tries to dampen its greenhouse gas emissions. The Inflation Reduction Act of 2022 allocated $9.7 billion for a national program called New ERA (Empowering Rural Communities).

In September, Jeff Wadsworth, chief executive of Poudre Valley Electric, one of the largest of Tri-State’s 42 member cooperatives, told Big Pivots that the New ERA was the “single biggest investment for electric cooperatives since the New Deal.” The law creating the Rural Electrification Administration was passed by Congress in 1936, providing federal aid for extension of electrical lines to rural areas.

As the IRA was being crafted in 2022, Tri-State representatives lobbied Congress and the Biden administration hard to carve out funds for the energy transition in rural communities.

Tri-State has filed a letter of interest in applying for $970 million in federal funds. Whether it will get full funding is uncertain. In its SEC filing Tri-State reported overall long-term debt of $2.9 billion.

The National Rural Electric Cooperative Association, or NRECA, in September pointed out that the U.S. Department of Agriculture, the federal agency responsible for administering the program, had received 157 letters of interest from electric co-ops for 750 projects. The money is to be divided between small- and medium-sized cooperatives as well as Tri-State and other large cooperatives.

The federal agency has not set a timeline for a decision on federal funding, but stakeholders in the Tri-State process at the PUC expect a decision from commissioners by early summer. This presumed a decision by federal funding by mid-spring.

In a memo sent to some members of the Colorado Solar and Storage Association on Tuesday, the organization’s president, Mike Kruger, and general counsel, Ellen Howard Kutzer, said they believe it is best to support Tri-State in its quest for federal aid.

“We continue to believe it is better for the Colorado energy market to have a solvent and functioning Tri-State making an energy transition,” they said.

COSSA and several other key groups involved in the proceeding at the PUC agree to a stipulation that expresses their broad support while reserving the right to push back on elements that aren’t part of the plan that presumes federal money through the New ERA program. Other signatories include Western Resource Advocates, the Sierra Club, and the Colorado Energy Office as well as two of Tri-State member cooperatives. At least two other groups declined.

The Office of the Utility Consumer Advocate, the state agency with the mission of speaking on behalf of consumers, also supported the narrow agreement.

“We are supportive of the broad concept that Tri-State has laid out in their electric resource plan, although we think there is a lot of work to do,” said Joseph Pereria, deputy director of the agency. “There are a lot of unknowns, but a good process has been started.”

Tri-State’s insistence that it needs more natural gas backup for its major expansion into renewables is likely to be a major source of disagreement going forward. Xcel Energy and Platte River Power Authority are making the same argument as they prepare for a life of making electricity without coal.

Another major discussion will likely be about what constitutes just transition for Craig as it closes its coal-burning units. In adopting its goals for dramatic decarbonization in 2019, Colorado legislators also created an Office of Just Transition. The mission as summarized by the agency is to help “workers transition to new, high-quality jobs, to help communities continue to thrive by expanding and attracting diverse businesses, and to replace lost revenues.”

What this means in practice, though, is unclear. In the case of Pueblo, Xcel Energy has agreed to pay property taxes for 10 years after the last of the three coal-burning units at the Comanche Generating Station closes by 2031. As part of that process, Xcel will be conducting what is called a just transition electric resource plan. Xcel will see what kind of assets needed for its business can be located in Pueblo to replace the lost tax base and jobs.

Northwest Colorado communities need the same level of consideration and assistance, said Pereira.

Pueblo has started the conversation. “Craig and Moffat County are in a different part of the state, with different needs and concerns,” he said. “So it’s important that we listen to those communities and that we think big about how we can help them plan for a future without coal.”

Wade Buchanan, director of the Office of Just Transition, said only that it’s useful to have certainty when planning for retirements of coal plants and mines.

How about 98.5% emissions-free electricity by 2040? — Allen Best (@BigPivots)

Downtown Denver from the Denver Art Museum. Photo/Allen Best

Click the link to read the article on the Big Pivots website (Allen Best):

Study finds that existing technology can get Colorado to near-zero electricity without need for breakthroughs in geothermal, nuclear or other realms. It will require a bit of natural gas.

Colorado can decarbonize its electricity very deeply by 2040 without busting the bank. But there’s a catch.

To hit this 98.5% decarbonization level will require accepting natural gas as 1% of the mix along with a small percentage of carbon-based electricity imported into Colorado. And getting there will not require still-costly emerging technologies.

That’s the take-away from a modeling study commissioned by the Colorado Energy Office.

How about 100% emissions-free electricity? That can be achieved, and in several different ways — all of them at a higher price, according to the modeling conducted by Ascend Analytics, a Boulder-based company.

The company modeled two other scenarios deploying deep levels of geothermal, hydrogen, and advanced nuclear reactors as well as other emerging technologies. Still another scenario examined the cost of using simply wind, solar, and existing battery technology. And one scenario emphasized local generation.

These five other scenarios came in at prices of $47.1 billion to $56.2 billion in net-present value — all substantially higher than the $37.5 billion of the less-than-perfect scenario using some natural gas.

Burning natural gas on an as-needed basis to ensure reliability will produce 565,000 metric tons of emissions in 2040. That compares with 40 million tons in 2005, according to the modeling study. This scenario also envisions a higher share of electricity , about 17%, being imported into Colorado.

All the scenarios in the modeling assume substantial amounts of improved energy efficiency, in effect partially eliminating the need for new generation. All models also assume that Colorado utilities will, as required by a state law, be participating in some sort of regional market for electricity by 2030.

Will Toor, director of the Colorado Energy Office, called the study results “huge.”

“The biggest takeaway of the study is understanding that we can get very deep emissions reductions, nearly zero emissions by 2040 while minimizing costs to utility customers. That is not something that we understood going into this study,” he said in an interview.

“As we look at developing the policy framework for 2040, it will be very much informed by that understanding,” he added.

The modeling study will likely deliver the justification for a bill in the legislative session beginning in January that would propose a new emissions-reduction target for Colorado’s electrical utilities. Laws adopted in 2019 and in subsequent years tasked those utilities with reducing emissions 80% by 2030. Most and perhaps all seem to be on track to get there with relative ease.

Some moving higher more quickly

Some utilities expect to get far higher—and soon. Notable is Holy Cross Energy, the electrical cooperative based in Glenwood Springs. It expects to achieve 92% emissions-free electricity by early in 2024 and has a goal of 100% by 2030.

Bryan Hannegan, chief executive of Holy Cross, has long said that the path to 90% was reasonably clear. The hard part, with answers still unknown, he has said, will be that final 10%. And unlike the path to 90%, that final leg will likely be more expensive.

The modeling has any number of assumptions. Some likely are further out on the limb than others.

All the scenarios assume a 40% increase in electrical demand across Colorado during the next 17 years. Population growth will drive some of this new demand. Increased demand will also result from electricity replacing fossil fuels in both transportation and building and water heating.

To satisfy this increased demand will require new generation. Just how much new generation will depend upon the type. Wind and solar exclusively from generators within Colorado coupled with battery storage would require 74,492 megawatts of installed capacity. Having natural gas available will require far less, 44,474 megawatts.

On a more micro level and with a concrete challenge, Platte River Power Authority — the supplier to Fort Collins, Loveland, Estes Park and Longmont — is putting together its resource plan looking out to 2030. Directors in 2018 identified a goal of 100% renewables by 2030 but also attached a handful of conditions to that goal. Five years later, Platte River’s planners don’t see a way to 100% by 2030, at least not without risking reliability or absorbing considerable costs. One scenario calls for 85% renewables. The plan, however, is not scheduled to be completed until June.

For an explanation of the reasoning for a unanimous resolution by Platte River’s board of directors, see a blog by Fort Collins Mayor Jeni Arndt, her city’s board representative.

The Crossing Trails Wind Farm between Kit Carson and Seibert, about 150 miles east of Denver, has an installed capacity of 104 megawatts, which goes to Tri-State Generation and Transmission. Photo/Allen Best

Transmission, seen by many as critical to deep levels of emissions reductions, gets relatively little mention in the modeling report. Arguably, an entire scenario could be built around potential for transmission upgrades, such as greater ease of moving electricity between the Western Interconnection grid, of which Colorado is a part, and the Eastern Interconnection, which starts at Kansas and Nebraska.

Ascend Analytics had conducted similar modeling about deep, deep decarbonization of electricity for Los Angeles Water and Power. The question in that study was what would it take for Los Angeles to achieve zero-emissions electricity?

Twenty years ago Colorado and its electrical utilities almost entirely embraced coal generation as the cheapest energy source far into the future. By 15 years ago, that resolve had weakened. Voters had adopted the state’s first renewable energy mandate and legislators had upped it. Wind prices were swooping down. Not least utilities had become confident of keeping lights on while deploying wind and solar.

A watershed year was 2017. Xcel Energy, Colorado’s largest utility, which supplies roughly half of the electricity in the state, sought bids for new electrical generation. The low prices for wind and solar dramatically undercut those of fossil fuels. Proponents of renewables were elated. A year later, Xcel Energy announced its plans for 80% decarbonization by 2030. The paradigm had shifted.

Most of those wind, solar, and storage projects bid in 2017 have now or soon will go on line. Statistics for 2023 are not yet available. However, as of 2022, renewable energy accounted for 37% of the state’s electrical generation, with wind power accounting for four-fifths of that renewable generation, according to the U.S. Energy Information Administration.

Two coal plants have closed since 2017 and now eight more will be laid down before the end of 2031. One, Pawnee, located at Brush, is to be converted to natural gas.

Toor said his agency began having discussions in 2022 about the next steps beyond 2030. The questions guided creation of the modeling study. The state called in utilities, environmental groups, industrial sectors, and others for conversations about how to frame the study.

What some said

Ean Tafoya, the Colorado director for GreenLatinos, a national advocacy group, said he remembers the first meeting occurring in May. Based on the number of those interested in environmental justice invited to participate as stakeholders, he suspects dozens of stakeholders were involved.

The results of the modeling Tafoya described as “very promising.”

“It shows me that the emerging technologies that my community has been very concerned about, that we don’t need them,” he said, referring to hydrogen, carbon capture and sequestration and direct-air capture as well as deep-well geothermal.  â€œAnd if we can do this by 2040 without change of policy, that is very exciting.”

If Colorado can find ways to leverage capital through green infrastructure banking and address workforce training, Colorado “can truly be a leader nationally and globally,” he added.

Xcel Energy issued a statement that said the company was “encouraged by the Colorado Energy Office’s findings.”

“We agree there is a need for new 24/7 carbon-free technology to achieve deep carbon reductions. The state’s policies will enable us to reduce carbon emissions greater than 80% by 2030 and will inform our future investments into the local infrastructure necessary to move clean energy reliably into our customers’ homes – while keeping bills low.”

Do Colorado’s modeling results suggest a template for other states or regions of the United States, even other countries? Toor thinks so.

“It is saying that you can get to near-zero greenhouse gas emissions and pollution from electricity generation within the next 20 years —with no incremental cost to customers. That’s true with other states, and it doesn’t matter whether you’re a red state or blue state. “Regulators and utilities should be excited about the ability to minimize costs to customers while nearly entirely eliminating emissions. I think that is a really important conclusion.”

That said, added Toor, other states are starting at different places. “We have already had substantial progress.”

Colorado also is blessed with renewable resources. It has wind – not the best, but among the best. It also has strong solar. Again, not the best, but very good.

“I want to be careful about claiming insight into other states, but I do think it is a very striking result that you can achieve such deep pollution reductions simply by developing the lowest-cost resources,” said Toor.

In creating the documents, Ascent based its projected costs of various technologies on projections by the National Renewable Energy Laboratory but also Ascend’s Market Intelligence Team.

How fast will technology move?

Even with those presumably careful calculations based on strong information, how good are they? After all, 20 years ago, the cost numbers argued for coal. Incredibly, some people still try to make that argument.

Also 20 years ago, many smart people projected the imminent arrival of both peak oil and, by extension, peak natural gas. Those projections, based on rear-view mirror data, failed to anticipate the rapid incremental advances in hydrofracturing, horizontal drilling and other extraction technology. From $14.50 per million Btu in 2008, natural gas prices plummeted to $2.50 with the recession – but never returned to the stratospheric levels that justified poking very deep holes across the Piceance Basin southwest of Craig. Meantime, the U.S. became a net exporter of oil.

Of course, we have had similar cost curves with wind, then solar, and now storage prices.

Might the same thing occur with geothermal, using underground heat to produce electricity, as is already done in California and some other places? Sarah Jewett, vice president for strategy at Fervo Energy, suggested cause for similar optimism in her industry during her remarks at the Colorado Rural Electric Association conference on Monday. The cost curve in recent projects in Utah and Nevada has been bending downward, she said.

Earlier that same day, a panel of experts about nuclear energy reported cause for optimism about nuclear, while yet another panel predicted reason to believe hydrogen will play an important role in the future.

Toor acknowledged the unexpected cost declines for many technologies. “It’s quite possible that hydrogen and other technologies will be lower cost than now projected,” he said.

Regardless, he added, these near-zero or zero-emissions pathways should become the baseline.

“I think it would be important that utilities are looking at new technologies and that utility regulators are able to look at getting to even deeper reductions based on what the actual cost trajectories turn out to be,” he said.

Colorado’s energy regulation framework is well suited to achieving those deep reductions —even deeper than the low-cost 98.5% emissions-free that this modeling suggests will be possible.

A final report, after review by stakeholders, is expected in December.

Following are what the modeling study cites as its key findings. The language is verbatim from the report:

  • The Economic Deployment scenario, which relies on current state and federal policies and is projected to meet demand at the lowest cost, is projected to reliably meet electricity needs in 2040 while achieving 98.5% reduction in greenhouse gas emissions in 2040 from a 2005 level while also achieving near zero emissions reduction in nitrous oxide and sulfur oxide.
  • Wind and solar will be the main source of electricity in Colorado in 2040. In the Economic Deployment scenario, 76% of electricity comes from in-state wind and solar; 16% comes from out-of-state imports of near zero-emissions electricity (mostly wind from a wholesale electricity market); and 10% from energy efficiency, with the rest coming from other sources. Across all other scenarios, in-state wind and solar account for more than 90% of electricity.
  • In the Economic Deployment scenario, gas-fired electricity generation meets only about 1% of total need for electricity.
  • Under current cost assumptions, the Optimized 100 scenario, which achieves zero emissions by 2040 using a technology-neutral, least-cost approach, selects a substantial amount of hydrogen and a modest amount of geothermal to complement wind, solar, and batteries. It is 25% more expensive than the economic deployment scenario.
  • The Wind, Solar and Battery scenario is 20% more expensive than the Optimized 100 scenario and 50% more expensive than the least cost Economic Deployment scenario. The Accelerate Geothermal scenario is 11% more expensive than the Optimized 100.
  • The Optimized 100 scenario retires all gas-fired generation by 2040. It replaces retiring gas capacity primarily with clean hydrogen starting in 2032. By 2040, this scenario has 5,061 MW of clean hydrogen and 125 MW of geothermal generation.
  • The model does not select gas with carbon capture or advanced modular reactors in any scenario because of the cost.
  • The Accelerated Geothermal scenario adds a requirement to have 10% of demand met with geothermal in 2040, which results in 1,989 MW of installed capacity (compared to 125 MW in the Optimized 100 scenario).
Mauna Loa is WMO Global Atmosphere Watch benchmark station and monitors rising CO2 levels Week of 23 April 2023: 424.40 parts per million Weekly value one year ago: 420.19 ppm Weekly value 10 years ago: 399.32 ppm 📷 http://CO2.Earthhttps://co2.earth/daily-co2. Credit: World Meteorological Organization

#ClimateChange is turning swaths of #California’s mountains into ‘zombie forests’ — The Los Angeles Times #ActOnClimate

Pinus ponderosa subsp. ponderosa. Photo credit Wikimedia.

Click the link to read the article on The Los Angeles Times website (Alex Wigglesworth and Ian James). Here’s an excerpt:

The expanse of Sierra National Forest near Shaver Lake is a relic of the climate before global warming. Scientists believe that the conifers won’t be able to survive the current conditions. Researchers at Stanford University found in a recent study that roughly one-fifth of all conifer forests in the Sierra are mismatched with the warmer climate and have become “zombie forests.”

[…]

The findings indicate that these lower-elevation Sierra conifer forests, which include ponderosa pine, sugar pine and Douglas fir, are no longer able to successfully reproduce. Conditions have become too warm and dry to support conifer saplings, whose shallow roots require plenty of water if they are to survive into adulthood, Hill said. Giant sequoias also grow in lower-elevation areas of the Sierra Nevada, but the researchers didn’t analyze the risks specific to those trees.

When these forests burn in high-severity wildfires — or are wiped out by drought, disease or pests — they will likely be replaced by other types of trees and brush, the scientists said. That could dramatically slash how much carbon the region can store; provide a habitat for invasive species; and displace plants and animals that call the forests home.

The clean-energy transition is ‘unstoppable,’ IEA says — The Washington Post

Click the link to read the article on The Washington Post website (Maxine Joselow and  Vanessa Montalbano). Here’s an excerpt:

The clean-energy transition may be inevitable, but may not happen fast enough, IEA says

The flagship annual report from the International Energy Agency, dubbed the World Energy Outlook, offers a rosy prediction of the growth of clean-energy technologies around the world. It portrays the decline of fossil fuels, the main driver of rising global temperatures, as all but inevitable.

“The transition to clean energy is happening worldwide and it’s unstoppable,” IEA executive director Fatih Birol said in a statement. “It’s not a question of ‘if’, it’s just a matter of ‘how soon’ — and the sooner the better for all of us.”

[…]

The IEA envisions green technologies such as solar panels, wind turbines and electric cars taking off in the coming years, thanks to both supportive governmental policies and market forces. By 2030, it predicts:

  • Renewables’ share of the global electricity mix will approach 50 percent, up from around 30 percent today.
  • Three times as much investment will flow to offshore wind projects as to new coal- and gas-fired power plants.
  • The share of fossil fuels in the global energy supply will fall to 73 percent, down from about 80 percent today.

Still, demand for fossil fuels will remain too high for humanity to meet the goal of the Paris climate accord: limiting global temperature rise to 1.5 degrees Celsius (2.7 degrees Fahrenheit) above preindustrial levels, the report says. On the supply side, the United States is churning out record amounts of oil. Yet negotiators at this fall’s United Nations climate summit, known as COP28, can make certain commitments that help keep the Paris target within reach, the IEA said. They include pledges to triple global renewable energy capacity and double the rate of energy efficiency improvements.

The shiny new cold-weather air source heat pump installed summer 2023 at Coyote Gulch Manor.

#Colorado and #Wyoming Partnering to Become National Leader in #Climate-Resilient and Sustainable Technologies

Green River Lakes and the Bridger Wilderness. Forest Service, USDA, Public domain, via Wikimedia Commons

Click the link to read the article on the State of Colorado website:

Tuesday, October 10, 2023

Colorado and Wyoming are collaborating to support a regional team working to power innovative pathways toward climate resiliency by utilizing data, predictive modeling and cutting edge technology to address key challenges. The Colorado-Wyoming Regional Innovation Engine (CO-WY Engine) is one of 16 finalists in the first-ever National Science Foundation (NSF) Regional Innovation Engines Competition, which will award up to $160 million in funding over the next ten years.

Officials in both states recognize the opportunity to secure federal funding that will transform the region into a national leader in developing climate-resilient and sustainable technologies and expand economic opportunities and workforce development in these key areas. 

To elevate the CO-WY Engine, Colorado and Wyoming have both committed to align resources that will support the Engine’s goals, including increased engagement of the business community with the region’s research institutions and Federal Labs; attracting more funding to support the commercialization and monetization of new technologies; and growing diversity within the region’s workforce to include rural communities. 

“We are thrilled to partner with Wyoming on this plan as Colorado is leading our country on environmental tech to help address climate challenges. This funding will grow the work of our universities and federal labs while creating more jobs,” said Gov. Jared Polis.

“The pathway to a prosperous global future will be paved with adequate, affordable energy and a rigorous commitment to a healthy environment,” Gov. Gordon said. â€œWyoming understands the urgency of addressing climate challenges. Our unequaled leadership in innovating and developing needed technologies supports Wyoming’s all-of-the-above energy strategy. This approach will grow our economy, develop our workforce and support thriving communities.”

The CO-WY Engine, spearheaded by Innosphere Ventures, looks to transform the region into a leader in the development and commercialization of climate-resilient and sustainable technologies. These technologies will support communities across the region and the country to monitor, mitigate and adapt to climate impacts. They are expected to have direct applications to water resource management, agriculture technology, and extreme weather, including wildfires and flooding. 

“We can solve so many climate-related challenges with technology-driven solutions, and NSF funding will dramatically increase what we can accomplish,” said Mike Freeman, CEO of Innosphere Ventures and lead of the CO-WY Engine’s proposal to the NSF. â€œWe are pleased to have the support of both Colorado and Wyoming, which have such a strong history of collaboration and share our commitment to creating an inclusive, nationally and internationally relevant Engine that employs a diverse workforce and benefits rural and urban communities alike.”

Among the initiatives being explored by Colorado and Wyoming, the Wyoming Business Council, Wyoming Venture Capital, the Colorado Office of Economic Development and International Trade, and Colorado’s Venture Capital Authority are assessing the possibility of a venture capital fund or funds that will invest in startups commercializing technologies that emerge from the CO-WY Engine. 

These commitments build upon existing collaboration between the two states, including a four state Memorandum of Understanding (MoU) with New Mexico and Utah to create the Western Inter-State Hydrogen Hub to advance a regional hydrogen economy. Colorado and Wyoming have also signed an MoU outlining the states’ commitments to explore the development of direct air capture to reduce carbon dioxide in the atmosphere.

“Across the Midwest and Mountain States, Wyoming and Colorado rise to the top as one of only a handful of regions that have the talented workforce, collaborative business ecosystem, and research and development capabilities to become a national leader in developing climate resilient technologies. NSF funding will accelerate that growth exponentially, and we are committed to working with Colorado to seize this opportunity,” said Josh Dorrell, CEO of the Wyoming Business Council.

“In Wyoming, Colorado has found a nimble partner equally committed to growing a strong, diversified economy, engaging urban and rural communities alike, and leveraging our regional strengths to create new commercial opportunities that also create climate resiliency. Elevating shared priorities and resources like a regional venture capital fund will directly support the development of the CO-WY Engine as a national and global leader in climate-resilient technologies,” said Eve Lieberman, OEDIT Executive Director.
ďťż
The NSF Engines program envisions supporting multiple flourishing regional innovation ecosystems across the U.S., spurring economic growth in regions that have not fully participated in the technology boom of the past few decades.The NSF is expected to announce successful Regional Innovation Engines this fall.

A few thoughts on Xcel Energy’s biggest pivot yet — @BigPivots (Allen Best)

Xcel Energy building in downtown Denver. Photo credit: Allen Best/Big Pivots

Click the link to read the article on the Big Pivots website (Allen Best):

A lot of money, of course, and a lot of new transmission in and around metropolitan Denver. What else is there in this package?

What an exciting time for Colorado.

We’re reinventing energy at a brisk pace that puts us in the front tier of states engaged — and also guiding — this necessary and critical transition.

And now we have specifics of what our largest electrical utility, Xcel Energy, with 1.6 million customers, prefers to do in meeting expanding demands for electricity while complying with a raft of state laws adopted beginning in 2019.

“This plan is transformational,” says Xcel in its filing from Monday night with the Colorado Public Utilities Commission. Yep.

You can download the report, â€œOur Energy Future: Destination 2030” Or go to the PUC e-files in proceeding 21A-0141E and look for Public 2021 ERP & DCEP.. There are several dozen related documents in the docket.

You’ve probably read the about this in the Denver Post or elsewhere. Lots of statistics. The most important one in 184 pages of statistics is this:

Xcel expects to be at 80% to 85% emissions-free energy by 2030. That not just a reduction as compared to 2005 levels. The law adopted in 2019 required it to achieve 80% reduction. This plan, if adopted and executed, goes higher. This is more than reduction. It goes roughly 10% higher.

The company says it can deliver this with a rate impact of about 2.25% annually. This compares with the projected rate of inflation of 2.3% during the remainder of the 2020s.

Too much? Well, Xcel does look out after its own financial interests. Robert Kenney, the president of Xcel’s Colorado division, made the case for reward for capital invested in an exchange Tuesday night with self-appointed and dedicated Xcel watchdog Leslie Glustrom at Empower Hour.

“I do believe we have seen the investor-owned utilities (around the country) spur innovation for nascent technologies into maturity,” said Kenney, who before his arrival in Colorado in June 2022 spent seven years with PG&E in California and, before that, as a PUC commissioner in Missouri for six years.

(See that exchange here; it’s early in the 90-minute program).

Xcel is moving boldly with the $14 billion in energy investments identified in this plan, but it may not even be the most impressive feat in Colorado. Holy Cross still says it expects to be at 100% emissions-free energy by 2030. And Tri-State, too long the epitome of a drag-your-feet G&T, is not terribly far behind — if it can keep its members. But that’s another story.

Xcel was reluctant to go forward with its first major wind farm, completed in 2004, but now has much wind — and will add far more in the next few yeas. Photo near Cheyenne Wells, Allen Best

Keep in mind, this is not just fuel switching. It’s also fuel expansion. We will need double or triple the electricity as we electrify buildings and transportation. We’ve barely begun.

This is on top of population expansion within metro Denver, the primary market for Xcel Energy. Xcel projects increased demand (called load, in the terminology of electrical providers) at 300 megawatts by 2026.

Xcel’s report notes that the population growth in the Denver metro area has consistently outpaced the national rate in every decade since the 1930s.

That said, much in Xcel’s preferred plan was unsurprising. It lays out a broad program for 6,545 megawatts of new renewable projects, broken down in this way:

  • 3,400 megawatts for wind;
  • 1,100 megawatts of solar;
  • 1,400 megawatts of solar combined with storage;
  • 19 megawatts of biomass (forest trees at a plant in Hayden);
  • 600 megawatts of standalone storage.

And to think, aside from the 340-megawatt Cabin Creek pumped-storage hydro at Georgetown, Colorado’s largest battery storage facility last winter was still only 5 megawatt-hours (at the Holy Cross project between Glenwood Springs and Basalt).

This year, Xcel has added 225 megawatts of battery storage to Front Range locations. That was the result of a 2016 resource plan. These things do take time.

Xcel said it proposes six times more storage as compared to its contemplation earlier in this process — a result directly of incentives provided by the Inflation Reduction Act of 2022.

That federal package also delivers other benefits. It will, says Xcel, bring “billions of dollars in federal support to Colorado.” It estimates $10 billion in IRA benefits to customers.

Big investment in transmission

Transmission figures prominently in this plan.

PUC commissioners last fall approved the Power Pathway Project, a $1.7 billion string of high-voltage transmission lines looping 560 miles from near the Pawnee power plant at Brush and around the eastern plains and back to the Front Range. Construction began in June.

Xcel says its “existing transmission system is capable of reliably serving our customers today, but the energy transition cannot be accomplished with only minor changes to the transmission system.”

This plan proposes an additional $2.82 billion in transmission investments.

For detailed profiles of Xcel’s routing ideas, go to Xcel’s Power Pathway website.

Part of that is the May Valley-Longhorn extension from the May Valley substation north of Lamar to Baca County, in the state’s southeastern corner. The 50-mile extension, called Longhorn — as most everything is called in the Springfield area — would cost $252 million. It figures prominently in Xcel’s plans because, as this report explains, Xcel finds the wind to be of low cost and its characteristics complementary to wind in other locations.

“Wind generation in the southeast portion of Colorado exhibits materially different generation patterns and will thus be a useful improvement to our system in adding geographic diversity to our overall renewable generation portfolio.”

Or, to paraphrase what I heard from locals in a visit there last week: the wind always blows in Baca County. They can describe the different winds with the expertise that a wine connoisseur might apply to various vintages.

Xcel says the Longhorn transmission extension will deliver 1,206 megawatts of wind. It also says that this wind will save the company – and hence consumers – a great deal of money: $282 million.

That deserves a wow!

However, if that Baca County wind were excluded, there would be more solar and storage.

The San Luis Valley also stands to get transmission upgrades. Appendix Q in the filings says this:

“The area has rough, remote, and challenging geography and weather, significant permitting issues due to a patch work of state and federal land use designations (conservation easements, U.S. Forest Service-managed land, National Park Service managed lands, and multiple state-protected areas).”

Electrical deliveries arrive almost entirely via three transmission lines crossing Poncha Pass. The valley residents are served by both Xcel and by Tri-State members. Both utilities have tried to create solutions since a 1998 study identified the problems. Some Band-Aids have helped.

Xcel proposes to spend $176 million to improve the situation in the San Luis Valley. Additional transmission would also open the door to development of new solar.

Most surprising to me — likely because I do not read the filings on the PUC dockets religiously – is how much Xcel believes it needs to spend in metro Denver: $2.146 billion.

It justifies the expense with this explanation.

“The company’s analysis shows that a new phase of the transition is emerging – reliably managing power transmission within and around the metropolitan area,” says the report. (Page 33).

“Delivery of remote resources is still an important consideration of transmission planning, as evidenced by the critical role that the CPP (Colorado Power Pathway) plays in enabling the preferred plan. However, as the company moves toward a grid powered primarily by renewable resources, and less reliant on legacy urban power plants, transmission investments are increasingly focused on enhancing the capacity and resiliency of the entire transmission grid —including those parts of the grid located closest to our customers’ homes and businesses.”

Why so much money for transmission upgrades in metro Denver? In part, says Xcel, it’s because of the lack of bids for resources within the metro area. The report and an accompanying appendix do not discuss reasons why the company failed to get those close-in resources.

That takes us to natural gas —and the related issue of how well Xcel can meet peak demands caused by extreme weather. The environmental community has been insistent that Xcel needs to reduce or eliminate its investment in natural gas generation. Xcel has maintained that natural gas must remain part of the equation, at least in this planning period, because alternatives have not yet been firmed up.

The company proposes to have 628 megawatts of capacity. This, it says, will solve the “reliability and resiliency variables” of a hot period in the summer of 2028.

In short, Xcel has to prepare for hot summers and cold winters. The base case is a hot spell in July 2022 and Winter Storm Uri of 2021. At both times, renewables underperformed. (I might have thought reference cases to a much hotter time of the future would have been used, but maybe I’m missing something).

What enables Xcel to meet the peak demands for cooling or heating? It could add on even more proven storage, altogether 3,700 megawatts worth, and over 13,000 megawatts of renewables, but at a cost of $5.4 billion more than this plan.

Instead, Xcel sees natural gas being the answer. The company emphasizes modeling that shows the new 400 megawatts of natural gas-created electricity will be needed only 5% of the time. Most of the time, they will sit idle. But, when needed, some can ramp up in a matter of 2 to 10 minutes, others as long as 30 minutes. This compares with coal plants, which mostly took 18 hours to ramp up.

Xcel is proposing a reserve margin of 18%. That’s how much capacity it plans on top of what it thinks it needs. All utilities have some reserve margins.

Game changers in next few years?

Storage is a major component of this part of this Xcel pivot and energy transition story altogether.

“The availability of cost-competitive utility-scale storage is reducing, but not eliminating, the need for new carbon emitting capacity resources – namely in inclement weather and during long-duration high-load situations,” says Xcel.

Will we get a break-through that will change the narrative?

Xcel plans a demonstration project at Pueblo that it expects to get underway in late 2024 to test the efficacy of a new storage technology called iron-rust that the developers believe can store energy for up to 100 hours. Along with its partner, Form Energy, it received a $20 million grant in April from the Breakthrough Energy Catalyst. This week, Xcel announced a grant of up to $70 million from the U.S. Department of Energy. Both grants are to be split between the Pueblo project and a parallel project in Minnesota.

If this proves out, does this change the ball game, largely eliminating the need for natural gas?

Xcel nods at this question, pointing to modeling results that “Highlighting the need for further advancements in technology and a more diverse portfolio of resources may be needed to help economically reach our clean energy goals in the future.”

It also talks about using fuels other than natural gas – think hydrogen and ammonia and biogas —in these plans.

This natural gas component will be the most hotly disputed element of the Xcel plan—as it has been for the last two years.

Also raising my eyebrows in this 120-day report:

New technologies

A recent Colorado law sought to nudge utilities into accelerating new technology. The rule-making by the PUC in regard to this Section 123 provision specified that the resources must be “new, innovative, and not commercialized technology, and provide unique, scalable and beneficiation attributes as to future costs, emissions, reduction, or reliability benefits.” “Wind, solar or lithium-ion based battery storage,” concluded the PUC, do not qualify.

Xcel solicited bids and got a variety of proposals, including:

  • a plant in the San Luis Valley that could burn a variety of clean fuels including hydrogen and ammonia;
  • a hydrogen fuel cell project near Brush that would use salt-storage caverns to deliver 10-hour storage;
  • a 5-megawatt geothermal power plant in Weld County that would mine the 135 degree C (275 degrees F) non-potable water found deep underground.

Xcel found all of these proposals from bidders wanting for one reason or another. However, that’s not a solid no in all the cases, the company added.

Xcel Energy proposes a small biomass at Hayden, site of the current Hayden Generating Station. It says skill sets can transition relatively easily. Photo/Allen Best

Biomass at Hayden

The company proposes a 19-megawatt biomass plant at Hayden, burning dead trees from northwest Colorado to produce electricity. Colorado has an existing biomass plant at Gypsum, which is a little smaller, 11.5 megawatts, in capacity. It burns wood from as far away as the Blue River Valley between Silverthorne and Kremmling.

Workforce transition

The company points out that it has closed 18 generating units across its service territory during the last 15 years without any forced workforce reductions.

It says it will leverage natural attrition and worker retirements, and the remaining workers will be “up-skilled to operate and maintain the new clean energy assets or, if they choose, relocated and or transited and reskilled into another job.”

For example, it says, workers at the Hayden coal-burning plant have 80% of the skills, on average, needed to operate and maintain a biomass unit. The company says it will work with the biomass unit vendor, Colorado Northwestern Community College, and others to identify the additional training needed.

Pueblo solicitation

As part of its plans for Pueblo, where the Comanche 3 coal-burning plant is scheduled for retirement by 2031, Xcel plans to solicit bids that will fill out what the company needs in that final segment of 2028-2030.

The projects need to help out Pueblo County economically, even though Xcel has already committed to paying taxes on Comanche 3 in lieu of its operation until 2040.

Will it be nuclear? Xcel has not ruled out nuclear, but neither does it see nuclear as an option for 2030.

Xcel Energy Colorado’s CEO Kenney, in his remarks at Empower Hour, said the company sees small modular reactors and related technology under development as having promise.” But, he added, “It is unlikely such technologies will be trued up on a timeline to replace Comanche 3. But it will absolutely be a technology that we will continue to explore.”

Social cost of carbon

The planning considerations for this are so much more complex than those of the past. Decisions must be filtered through the social cost of carbon and also the social cost of methane. There are considerations about disproportionately impacted communities. And, as noted above, we have “just transition” as a consideration.

The simile of a triathlon race

Such documents are not ordinarily noted for their literary flourishes, and this one is no exception. But it must be noticed that aa simile found on page 62 is worth calling out:

“Getting to this point is like training to get to the starting line of a triathlon. We are excited, we have a support team at the ready, we understand the challenges, and we are looking forward to taking them on with a good plan in place. But that does not mean that implementation and execution of the plan will be easy, and unknown challenges lie ahead given the breadth of generation and transmission development contemplated by this plan.”

Colorado Green, located between Springfield and Lamar, was Colorado’s first, large wind farm. Photo/Allen Best

How can #solar energy installations prioritize ecosystems? — #Colorado State University #ecovoltaics #ActOnClimate

Solar installation with the Front Range mountains. Photo credit: Colorado State University

Click the link to read the release on the Colorado State University website (Allison Sylte):

Solar energy will be an integral part of a more sustainable future, but with current technology, generating the amount of power needed in Colorado alone would require using roughly the land area of Denver.

That’s a lot of space – and potential disturbance to ecosystems, especially when you consider that in the past, energy companies have typically first graded the land and then put gravel or short, easy-to-mow turf grass beneath their solar panels. 

Agrivoltaics – the dual use of land for both solar installations and agriculture – offers an alternative way to generate renewable solar energy. Now, two Colorado State University researchers are proposing taking this a step further through what’s known as “ecovoltaics,” which co-prioritizes energy production and ecosystem services during the design and management phases of solar development.

“It’s important to talk about the sustainability of the solar industry so it doesn’t make the same environmental oversights as oil and gas,” said Matt Sturchio, a Ph.D. student in Biology and the Graduate Degree Program in Ecology. “With ecovoltaics, we hope to encourage an ecologically informed approach to solar array design and operation.”

Sturchio and CSU Biology Professor Alan Knapp outlined this concept in a recent article in the journal Nature Ecology and Evolution

“It will take a lot of solar panels and a lot of land to produce the electricity our society needs,” Knapp said. “As a land-grant institution, we see ourselves as stewards of the land, and it’s our job to offer sustainable solutions about how to use land wisely.”

Solar panels create unique microenvironments

Students study with solar panels. Photo credit: Colorado State University

While agrivoltaics is a step in the right direction, Sturchio said in many applications, it still prioritizes producing the most electricity possible in a given land area. This allows for the use of land beneath solar panels but overlooks opportunities to manipulate array designs in ways that might benefit the plants and animals beneath, especially in water limited ecosystems like the grasslands of Colorado. 

With ecovoltaic designs, solar energy production and preserving the landscape go hand-in-hand.

The ecovoltaic concept is partly informed by the researchers’ current work at Jack’s Solar Garden in Longmont, which is the largest commercially active site for agrivoltaics research in the U.S. 

Here, the CSU team studies how solar panels affect sunlight patterns and redistribute rainfall to create microenvironments that influence grassland ecosystem processes. These microenvironments promote diversity within solar installations and are a cornerstone of the ecovoltaics concept.

“What we’re trying to do is show the potential impacts of solar energy on our land, and how we can mitigate and potentially leverage them to reach desired outcomes,” he said. 

And perhaps most importantly, these approaches can be used to restore severely degraded or abandoned agricultural lands – which are prime candidates for large solar installations.

“Ecovoltaic approaches could help restore and even enhance biodiversity in these places, while providing much-needed clean energy,” Sturchio said.

“It’s a climate solution”

Solar panels and natural grasses. Photo credit: Colorado State University

Sturchio and Knapp will continue their research at a new facility in the plains east of CSU’s campus in Fort Collins.

 Here, solar panels will be installed in a native grassland environment – offering new insights about how they impact the ecology of places that are known to be harsh and dry, and where conditions are expected to become more volatile as climate change worsens in the future.

“Building our own research solar arrays will allow us to discover better ways to use this amazing energy source and will help us determine what we can do to make sure large-scale solar installations have less of a negative impact,” Knapp said. “We will study the impacts of placing solar panels farther apart, changing their orientations, and orienting panels vertically during rainstorms – there are many potential options.”

Sturchio said he’s hopeful that energy companies will use some of these principles as they build future installations.

“This research is really important because it’s a land use solution for a climate solution,” he said.

A dogged reporter covers our roiling world — Writers on the Range

Dave Marston has written a profile of friend of Coyote Gulch Allen Best. Click the link to read the article on the Writers on the Range website (David Marston):

Usually seen with a camera slung around his neck, Allen Best edits a one-man online journalism shop he calls Big Pivots. Its beat is the changes made necessary by our rapidly warming climate, and he calls it the most important story he’s ever covered.

Best is based in the Denver area, and his twice-a-month e-journal looks for the radical transitions in Colorado’s energy, water, and other urgent aspects of the state’s economy. These changes, he thinks, overwhelm the arrival of the telephone, rural electrification and even the internal combustion engine in terms of their impact.

Global warming, he declares, is “the biggest pivot of all.”

Whether you “believe” in climate change — and Best points out that at least one Colorado state legislator does not — there’s no denying that our entire planet is undergoing dramatic changes, including melting polar ice, ever-intensifying storms, and massive wildlife extinctions.

A major story that Best, 71, has relentlessly chronicled concerns Tri-State, a wholesale power supplier serving Colorado and three other states. Late to welcome renewable energy, it’s been weighed down with aging coal-fired power plants. Best closely followed how many of its 42 customers — rural electric cooperatives — have fought to withdraw from, or at least renegotiate, contracts that hampered their ability to buy cheaper power and use local renewable sources.

Best’s first newspaper job was at the Middle Park Times in Kremmling, a mountain town along the Colorado River. He wrote about logging, molybdenum mining and the many miners who came from eastern Europe. His prose wasn’t pretty, he says, but he got to hone his skills.

Because of his rural roots, Best is most comfortable hanging out in farm towns and backwaters, places where he can listen to stories and try to get a feel for what Best calls the “rest of Colorado.” Pueblo, population 110,000 in southern Colorado, is a gritty town he likes a lot.

Pueblo has been forced to pivot away from a creaky, coal-fired power plant that created well-paying jobs. Now, the local steel mill relies on solar power instead, and the town also hosts a factory that makes wind turbine towers. He’s written stories about these radical changes as well as the possibility that Russian oligarchs are involved in the city’s steel mill.

In 2015, signs supporting coal were abundant in Craig, Colo. Photo/Allen Best

Best also vacuums up stories from towns like Craig in northwestern Colorado, home to soon-to-be-closed coal plants. He says he finds Farmington, New Mexico, fascinating because it has electric transmission lines idling from shuttered coal power plants.

His Big Pivots may only have 1,091 subscribers, but story tips and encouragement come from some of his readers who hold jobs with clout. His feature “There Will Be Fire: Colorado arrives at the dawn of megafires” brought comments from climate scientist Michael Mann and Amory Lovins, legendary co-founder of The Rocky Mountain Institute.

“After a lifetime in journalism, his writing has become more lyrical as he’s become more passionate,” says Auden Schendler, vice president of sustainability for the Aspen Ski Company. “Yet he’s also completely unknown despite the quality of his work.”

Among utility insiders, and outsiders like myself, however, Best is a must-read.

His biggest donor has been Sam R. Walton’s Catena Foundation — a $29,000 grant. Typically, supporters of his nonprofit give Big Pivots $25 or $50.

Republican River in Colorado January 2023 near the Nebraska border. Photo credit: Allen Best/Big Pivots

Living in Denver allows him to be close to the state’s shot callers, but often, his most compelling stories come from the rural fringe. One such place is the little-known Republican River, whose headwaters emerge somewhere on Colorado’s Eastern Plains. That’s also where Best’s grandfather was born in an earthen “soddie.”

Best grew up in eastern Colorado and knows the treeless area well. He’s written half a dozen stories about the wrung-out Republican River that delivers water to neighboring Kansas. He also sees the Eastern Plains as a great story about the energy transition. With huge transmission lines under construction by the utility giant Xcel Energy, the project will feed renewable power from wind and solar to the cities of Denver, Boulder and Fort Collins.

Best admits he’s sometimes discouraged by his small readership — it can feel like he’s speaking to an empty auditorium, he says. He adds, though, that while “I may be a tiny player in Colorado journalism, I’m still a player.”

He’s also modest. With every trip down Colorado’s back roads to dig up stories, Best says he’s humbled by what he doesn’t know. “Just when I think I understand something, I get slapped up the side of the head.”

Dave Marston is the publisher of Writers on the Range, writersontherange.org, an independent nonprofit dedicated to spurring lively conversation about the West. He lives in Durango, Colorado.

Subscribe to Big Pivots here.

Just for grins here’s a gallery of Allen’s photos from the Coyote Gulch archives.

The next chapter in #Colorado’s decarbonization story: It may not read like Chinatown but this story about weaning our buildings off combustion of gases could get interesting — @BigPivots #ActOnClimate

Buried methane gas lines. Photo credit: Allen Best/Big Pivots

Click the link to read the article on the Big Pivots website (Allen Best):

Colorado is starting another chapter in what could be a future history book, “How We Decarbonized our Economy.”

In that book, electricity will be the easy part, at least the storyline through 80% to 90% reduction in emissions. That chapter is incomplete. We may not figure out 100% emissions-free electricity on a broad scale for a couple more decades.

This new chapter is about tamping down emissions associated with buildings. This plot line will be more complicated. Instead of dealing with a dozen or so coal plants, we have hundreds of thousands of buildings in Colorado, maybe more. Most burn natural gas and propane to heat space and water.

I would start this chapter on August 1. Appropriately, that’s Colorado Day. It’s also the day that Xcel Energy and Colorado Springs Utilities will deliver the nation’s very first clean-heat plans to state regulators.

Those clean heat plans, required by a 2021 law, will tell state agencies how they intend to reduce emissions from the heat they sell to customers. The targets are 4% by 2025 and 22% by 2030.

Wishing I had a sex scandal to weave into this chapter or at least something lurid, maybe a conspiracy or two. Think Jack Nicholson and Faye Dunaway in “Chinatown.”

Arguments between utilities and environmental advocates remain polite. Both sides recognize the need for new technologies. The disagreements lie in how best to invest resources that will pay off over time.

The environmental groups see great promise in electrification, particularly the use of air-source heat pumps. Heat pumps milk the heat out of even very cold air (or, in summer, coolness from hot air).

Good enough for prime time? I know of people in Avon, Fraser, and Gunnison who say heat-pumps deliver even on the coldest winter days.

Xcel says that heat pumps have a role—but cautions that cold temperatures and higher elevations impair their performance by about 10% as compared to testing in coastal areas. They will need backup gas heat or electric resistance heating. After two winters of testing at the National Research Energy Laboratory in Golden, the testing of heat pumps will move to construction trailers set up in Leadville, Colorado’s Two-Mile City next winter.

Xcel also frets about adding too much demand, too quickly, to the electrical grid.

Another, perhaps sharper argument has to do with other fuels that would allow Xcel to use its existing gas pipelines. Xcel and other gas utilities have put out a request for renewable natural gas, such as could be harvested from dairies. Xcel also plans to create hydrogen from renewable resources, blending it with natural gas. It plans a demonstration project using existing infrastructure in Adams County, northeast of Denver.

Jeff Lyng, Xcel Energy’s vice president for energy and sustainability policy, talks about the need for a “spectrum of different approaches.” It is far too early, Lyng told me, to take any possible technology off the table.

In a 53-page analysis, Western Resource Advocates sees a greater role for weatherization and other measures to reduce demand for gas. It sees renewable gas, in particular, but also hydrogen, as more costly and slowing the broad market transformation that is necessary.

“I think there’s a real tension that came out between different visions of a low-carbon future when it comes to the gas system,” Meera Fickling, an economist with WRA, told me.

We already have a huge ecosystem of energy, a huge investment in natural gas. Just think of all the natural gas lines buried under our streets. No wonder this transition will be difficult.

“It’s more difficult because everything you do in the gas sector now has a spillover effect in the electric sector,” says Jeff Ackermann, the former chair of the Colorado Public Utilities Commission. “Each of these sectors moves in less than smooth, elegant steps. We don’t want people to fall off one and onto the other and get lost in the transition. There has to be sufficient energy of whatever type.”

Getting back to the book chapter. Colorado has nibbled around the edges of how to end emissions from buildings. With these proceedings, Colorado is moving headlong into this very difficult challenge. The foreplay is done. It’s action time.

Xcel talks about a decades-long transition and stresses the need to understand “realistic limitations in regard to both technologies and circumstances.”

Keep in mind, 25 years ago, it had little faith in wind and even less in solar.

Do you see a role for Jack Nicholson in hearings and so forth during the next year? I don’t. Even so, it promises to be a most interesting story.

The shiny new cold-weather heat pump recently installed at Coyote Gulch Manor.

Jobs in #Brighton. But what about #Craig?: Transportation matters greatly for #solar and battery manufacturers. But what about #Colorado’s #coal towns, #Pueblo, #Craig and others? — @BigPivots #ActOnClimate

Vestas located a factory to produce wind turbines in Pueblo in 2010 and has added other renewable energy elements even as the coal-burning units have begun to retire. Photo credit: Allen Best

Click the link to read the article on the Big Pivots website (Allen Best):

Every transition produces winners and losers. U.S. fiscal policy shifted in the 1880s and the economy of Aspen cratered for decades. Some silver-mining towns never recovered. In the 1980s, newspapers were plentiful. Ink now stains far fewer printers and editorial wretches. Amazon thrives but Sears and Kmart, no more.\

How will Colorado’s coal-based towns transition as we quell emissions from energy production? Legislation of recent years seeks to deliver what lawmakers call a just transition, meaning that Pueblo, Craig and other coal-based communities will stay on their feet.

The newest round of job-producing investments in emission-free technologies, though, call into question how difficult that will be. Two new factories are to be created in Brighton, on metropolitan Denver’s northeastern fringe. The combined investment of $450 million will deliver more than 1,200 average- to better-paying jobs.

VSK Energy will manufacture solar photovoltaic panels and will employ more than 900 people. It is a direct result of incentives in the federal Inflation Reduction Act of 2022, which seeks to restore U.S. manufacturing of renewable energy components.\

The second factory will produce a new generation of energy-rich lithium-ion batteries. The company, Amprius Technology, says that a new anode, which will use silicon mined in Montana, will double the range of a Tesla, allowing it more than enough capacity to roam Colorado from corner to corner and the ability to juice up to 80% capacity in six minutes. The company also says the new batteries will deliver value to drones and aircraft. Sounds like a game-changer.

For a longer, more in-depth piece from which this was drawn, see Two big new-energy factories

Both companies cited proximity to Interstate 76 as a significant consideration in siting their factories. They also have proximity to I-25, I-70 and I-80 plus Denver International Airport. If of not immediate importance, they also have access to transcontinental rail lines.

Availability of a large, skilled workforce was also cited. The battery company also cited the proximity of the Colorado School of Mines and other universities. It will employ a half-dozen Ph.Ds. in the research facility associated with the factory.

Something more intangible was also in play. It was described as a “strong cultural fit” by Ashwini Agarwal, the leader of Vikram Solar, the parent company for the solar manufacturer. Supply chains matter, but Colorado’s initiative in accelerating the energy transition also matters.

Andrew Huie, the vice president of infrastructure for Amprius, said something similar. “Colorado and Gov. Polis are embracing clean energy, and batteries align with Colorado’s clean energy goals,” he told me. “There may be synergies.”

This warehouse ion Brighton, once the distribution center for Sears and Kmart and most recently as a storage location for Costco appliances, is to become home to a lithium-ion battery factory. Rezoning to light industrial will first be necessary. Photo/Allen Best

Other companies are also carving out futures in this new energy economy along the Front Range. The Denver Business Journal recently cited three companies from Denver to Fort Collins that hope to stake a future with new batteries. And Lightning eMotors manufactures electric vehicles in Loveland.

Brighton already has Vestas, which arrived in 2010 to manufacture nacelles, containing the gearboxes and drive trains for wind turbines. Vestas also built a factory in Pueblo, near the Comanche Generating Station.

CS Wind, now the owner of the Pueblo factory, this year began an expansion that will add 850 jobs. It cited Inflation Reduction Act provisions that encourage wind production.

Jeffrey Shaw, president of the Pueblo Economic Development Corporation, said he expects announcement of other renewable-sector projects in the Pueblo area and probably throughout the state during the next 12 to 18 months. “A lot of it has to do with the Inflation Reduction Act,” he said, and in particular the law’s buy-American provision.

Already, Pueblo County has been rapidly adding both solar and storage. But so far, the new tax base for Pueblo won’t balance that from Comanche. Xcel Energy, Comanche’s primary owner, has agreed to pay taxes until 2040.

Western Slope towns dependent on coal extraction and combustion are a harder sell. At Craig, there was hope on becoming a hydrogen hub, but Colorado has pinned its highest hope for federal funding on a project involving Rawhide, the coal but soon to become gas plant near Brush. Nuclear has its fans in Craig and beyond, and the Economist notes that the Biden administration is dangling billions in financial incentives nationally. That same magazine also concludes that unresolved problems cloud the future of this technology.

As for new factories, Craig is 90 miles from the nearest interstate, at the end of a railroad and five hours from DIA. It does have a workforce with skills, but so far, no new applications for those skills.

At Nucla and Naturita, which losy their small coal plant in 2019, the challenge is even greater.

Maybe Craig, Hayden, and the other towns will figure out new careers by working with the state and the utilities. But maybe not.

Public Lands Rule rhetoric gets wacky: Conservatives aren’t so keen on conservation — @HighCountryNews

Rio Grande del Norte National Monument via the Bureau of Land Management

Click the link to read the article on the High Country News website (Jonathan Thompson):

A few months ago, the Bureau of Land Management quietly proposed a new rule designed to “guide the balanced management of public lands,” putting conservation on a par with other uses, such as grazing, oil and gas drilling and mining. Among other things, it would allow individuals or entities to lease public parcels for conservation purposes, including habitat restoration or invasive species eradication.

To many observers, myself included, the proposal seemed unremarkable, basically a clarification of the multiple-use framework mandated by the 1976 Federal Land Policy and Management Act. Nothing about it was particularly earth-shattering or new. Environmental groups mostly supported it, albeit tepidly, though some thought that the conservation lease idea might do more harm than good. Initially, the response from the extractive industries and their enablers in Washington, D.C., was similarly subdued — with one or two exceptions.

But then, a few weeks after the new rule was unveiled, a backlash erupted for reasons I cannot fathom. It started out when Montana Republican Rep. Matt Rosedale, in a moment of rare candor, admitted that he didn’t think conservation was “supposed to be on equal footing” with extractive uses. Soon, it became a raging rhetorical inferno, with the misinformation conflagration climaxing at a U.S. House Natural Resources Committee sh*%show … er, hearing on June 15. The Republican-led committee — whose motto is “putting conservatives back into conservation” — wanted to discuss a bill that would block a rule aimed at putting conservation back into public-land management.

Republican South Dakota Gov. Kristi Noem was one of the star witnesses, despite the fact that her state contains just .12% of the lands to which the rule would apply. The rule, she said, would be “devastating” for her state, because it would create “a mechanism like a conservation lease that could be bought by third parties, not even necessarily by people in our own country, and give them access and authority over these lands. It’s dangerous.”

Noem did not explain what she meant by third parties — or first or second parties for that matter — nor why that theoretical third party would be any more dangerous than the first two. She is also apparently unaware of the fact that foreign-owned corporations are regularly given access to and authority over the nation’s public lands — including the ability to rip them apart for profit — in the form of the mining claims and coal, oil and natural gas leases that she and other Republicans enthusiastically support.

While Noem may be dismissed as merely ill-informed, the same cannot be said of her co-witness, Wyoming Gov. Mark Gordon, also a Republican. Gordon opened his testimony by declaring that he was a conservationist, which was, at least at some point, perfectly true: He once served as treasurer for the Sierra Club and wrote that oil and gas drilling had turned the once “pleasant little Western town” in which he lived into “the place that stinks on the way to Casper”. (Fun fact: He also served on the board of High Country News in the early 2000s.) 

But times — and Gordon — have clearly changed: The governor then went on to deride conservation, claiming that the proposed rule would allow environmentalists to put conservation leases on active grazing allotments and force all the cattle off the land. This is blatantly false, and if Gordon had read the actual text of the rule, he surely would have known it. The draft rule may contain some ambiguity, but it is clear about one thing: It cannot â€œdisturb existing authorizations (or) valid existing rights.” Which is to say: The new rule cannot be used to boot cows, pumpjacks, mines, wind turbines or any other existing uses off public land. 

“Everything this administration does is about climate,” Gordon railed, veering away from the topic at hand, complaining that President Biden and company are “holding back the fossil fuel industry” and that “we can’t get a lease out of this administration. We can’t get a permit out of this administration.”

This is also untrue. In fact, on June 28 and 29, oil and gas companies had the opportunity to log into EnergyNet and bid on 116 oil and gas leases covering 127,000 acres of public land in Gordon’s own state, adding to the more than 7.5 million acres of leases already in effect in Wyoming. Meanwhile, the BLM has handed more than 300 drilling permits to operators in Wyoming this year alone, bringing the total of approved and available-to-drill permits in the state to nearly 2,000.

As the hearing dragged on, it became clear that the Republicans either do not understand the proposed rule or — more likely — do not want to understand it, because understanding it would force them to acknowledge that it’s not going to impede fossil fuel development or livestock operations or any other extractive development. And if they were to acknowledge that, they’d have no reason to be outraged and, therefore, no reason to exist. [ed. emphasis mine]

Republican Rep. Lauren Boebert, who represents the HCN HQ’s home district in western Colorado, grilled BLM Deputy Director Nada Wolff Culver about whether the rule would impact existing grazing, impede forest management or “lock up more land.”

“No, it will not,” Culver said, adding that the agency simply was “implementing the Federal Land Management and Policy Act.” Boebert then demanded that Culver put that in writing. Thing is, it already is written in the 22-page proposed rule published in the Federal Register nearly three months ago. Had any of these folks bothered to read it, perhaps all this brouhaha wouldn’t have been necessary.

It went on, and on, and on like this. Rep. Doug LaMalfa, R-Calif., used his time to spread climate-denial pseudoscience on carbon dioxide. Utah’s Rep. John Curtis brought out the old “absentee landlord” trope about Eastern bureaucrats making decisions that affect the West, willfully ignoring the fact that Interior Secretary Deb Haaland is a member of the Pueblo of Laguna and, as she puts it, a 35th generation New Mexican. Immediately thereafter, Rep. Pete Stauber, R-Minn., slammed the proposed BLM rule for all the restrictions it allegedly would bring. His state, Minnesota, has exactly zero acres of BLM land.

Rep. Melanie Stansbury, of New Mexico (13.5 million acres of BLM land), was born in Farmington, where her dad worked in the oil fields and her mom at the San Juan power plant. The Democrat assured her colleagues the rule would not impede fossil fuel development or grazing. “I support this rule (because) it will help us manage our lands in a more balanced way,” she said. “I find it very upsetting when I see the resources of this body of Congress … being used to put forward narratives and misinformation that … is intended to scare the American people. Much of what I’ve heard here today is just not true.”

The Interior Department has extended the public comment period on the rule until July 5. So you’ve still got a few days to weigh in. 

In related news:

There are conflicting views regarding how the proposed Public Lands Rule would affect renewable energy development.

The Los Angeles Times’ Sammy Roth reported that some wind and solar industry officials worry the rule could give environmentalists and local BLM officials more tools to block future utility-scale solar or wind development. They point specifically to a provision that would extend rangeland health standards to all public lands and to another that would make it easier for agency offices to establish areas of critical environmental concern, or ACECs.

But Wolff Culver told Roth that neither provision is likely to hamper renewable energy projects. ACECs are already widely used by the agency; the new rule would merely consolidate, clarify and codify the procedure for establishing them. As for the rangeland health standards? The agency has never done a decent job of enforcing these standards for livestock operators, so why would it suddenly start using them to block solar projects?

The Center for American Progress said the new rule would actually encourage clean energy development. The proposed conservation leases, Drew McConville wrote, provide a potential framework for developers to do “compensatory mitigation,” or offset the impacts of a solar or wind facility by doing restoration work on another parcel of public land.

Meanwhile, the Biden administration is pulling out all the stops to facilitate clean energy development in other ways:

  • Haaland traveled to Rawlins, Wyoming, last week to help celebrate the groundbreaking of the TransWest Express transmission project. The high-voltage line will carry wind power from the massive Chokecherry and Sierra Madre wind projects outside Rawlins westward to the California grid. Permitting for the project took 15 years.
  • The BLM proposed yet another rule, this one aiming to promote utility-scale solar and wind development on public land by reducing rents and fees significantly and streamlining right-of-way permitting.
  • In May, the Biden administration announced that it would expedite the review of the proposed revival and expansion of the Hermosa manganese and zinc mine in southern Arizona. The Australian owner of the mine said it is needed to meet growing demand for electric vehicle battery materials.
  • But one place will remain off-limits to “green metal” mining: An ancient dry lakebed in Nevada. The Associated Press reported that mining companies had targeted the site for its abundant lithium, which is used in batteries for EVs, energy storage and other applications. But it turns out the site is even more valuable to NASA, and for a very different purpose: satellite calibration. And so the BLM withdrew the 36-square-mile site from mineral exploration. The agency has not extended the same courtesy to the tribal nations seeking to block the Thacker Pass lithium mine from destroying a sacred site.

#Colorado’s newest biggest battery — @BigPivots #ActOnClimate

The Thunder Wolf Energy Center east of Pueblo, near Avondale, has 100 megawatts of battery storage. Credit: Big Pivots

Click the link to read the article on the Big Pivots website (Allen Best):

Colorado now has its largest battery ever and its second-largest solar installation.

The Thunder Wolf Energy Center east of Pueblo, near Avondale, has 100 megawatts of battery storage, surpassing the 5 megawatts at the Spring Valley Campus above Glenwood Springs that formally began use in November 2022.

See: A biggest ever in Colorado for battery storage.

It also has 248 megawatts of solar energy, making it the second biggest solar installation in Colorado. Still largest is the Bighorn Solar project, which comes in at 300 megawatts. It is located on land adjacent to Comanche Generating Station in Pueblo that is owned by Rocky Mountain Steel.

This project is located on Colorado State Land Board property, which will get revenue from lease payments. NextEra Energy Resources is the developer and sells the power to Xcel via a power-purchase agreement.

Neptune, another solar project in Pueblo County, also went on line on June 16, adding 250 megawatts of capacity. The remaining capacity in that project of 75 megawatts is to go on line July 31.

Much more of both solar and storage can be expected as Xcel completes its plans that were triggered by its electric resource planning process in 2016. That plan approved by the Colorado Public Utilities Commission ultimately calls for 275 megawatts of battery storage in Pueblo and Adam counties.

Behind that there will be more yet. The plan approved by PUC commissioners in 2022 calls for 400 megawatts of battery storage to go along with 1,600 megawatts of solar and 2,300 megawatts of wind energy.

Allen Best is a Colorado-based journalist who publishes an e-magazine called Big Pivots. Reach him at allen.best@comcast.net or 720.415.9308.

The debt-limit deal could help clean energy. But probably not much — The Los Angeles Times #ActOnClimate

Mauna Loa is WMO Global Atmosphere Watch benchmark station and monitors rising CO2 levels Week of 23 April 2023: 424.40 parts per million Weekly value one year ago: 420.19 ppm Weekly value 10 years ago: 399.32 ppm 📷 http://CO2.Earthhttps://co2.earth/daily-co2. Credit: World Meteorological Organization

Click the link to read the article on The Los Angeles Times website (Sammy Roth). Here’s an excerpt:

As part of a deal struck by President Biden and House Speaker Kevin McCarthy to suspend the nation’s debt ceiling — and avoid an economically devastating default — federal officials would issue permits for the Mountain Valley Pipeline, which is designed to carry planet-warming natural gas from West Virginia. The pipeline would worsen the climate crisis. But it’s a top priority for West Virginia Sen. Joe Manchin III, a conservative Democrat without whom the party would lose control of the Senate…

The bill would set a two-year deadline for federal agencies reviewing energy projects to issue environmental reports, and set a page limit on those reports (150 pages, or 300 for “extraordinarily complex” projects). It would allow energy companies to hire a third-party consultant to write those reports, rather than having a slow-moving federal agency take responsibility. Other changes would make battery-storage facilities eligible for quicker approval under the Obama-era FAST Act, and help federal agencies avoid duplicative environmental analyses of energy technologies that other agencies have already studied…

But it’s a double-edged sword. Most of those provisions could also be used to speed up permitting for fossil fuel infrastructure, such as pipelines, power plants and export terminals. Other provisions could limit the number of coal, oil and gas projects subject to federal scrutiny under the National Environmental Policy Act, conservationists say — and in the process harm the Black, Latino and low-income communities that have long suffered the injustice of fossil-fueled air and water pollution.

The National Environmental Policy Act “is one of the most powerful tools that environmental justice communities have on the books,” said Jean Su, a Washington, D.C.-based attorney with the nonprofit Center for Biological Diversity. “If we keep making these exemptions … then we’re undercutting the whole point of the [law], which is to give voice to these environmental justice communities and the public to weigh in on how projects will affect them.”

[…]

Scientists say the United States must dramatically pick up the pace of building solar farms, wind turbines, batteries and electric power lines to have any hope of avoiding the worst consequences of global warming. Those consequences include deadlier heat waves, harsher droughts, more powerful storms, larger wildfires and more destructive coastal flooding. But across the country, local opposition has made it increasingly difficult to build clean energy. Conservationists, rural residents and Native American tribes are pushing back against projects they say would destroy wildlife habitat, spoil beautiful views and desecrate sacred sites. A report released Wednesday by Columbia Law School found that local governments across 35 states have implemented 228 ordinances blocking or restricting renewable energy facilities.

Time is ripe for rural climate action: #Colorado Farm & Food Alliance wants to create a model for bringing resources to the regions facing the most severe risk from #ClimateChange — Colorado Newsline #ActOnClimate

(Lance Cheung/USDA/Public Domain Mark 1.0)

Click the link to read the article on the Colorado Newsline website (Pete Kolbenschlag):

There is no better time to invest in rural Colorado and in climate action. The best science is telling us that the window is still slamming shut for staving off significantly worse effects from climate change. Congress might be focused on the debt limit and spending cuts, but we should not be distracted by the drama.

Still, for those who insist on weighing the price of action or inaction today as a bottom line, take note: The future in which we do not act to avert this cascading catastrophe will be far more expensive than almost any future in which we did.

The good news is that there is more funding available than ever to help rural communities transition into 21st century economies that center conservation, climate action, and prosperity. The catch is that they need to participate to get these resources. And for many small communities, that in itself is a burden that may be too much to overcome.

Smart investment in frontline climate action needs to make it to the regions facing the most severe risk from climate change. It needs to reach the places that have borne and will bear the impacts from past and current fossil fuel activity. And it needs to be accessed by the communities that have the furthest to go to catch up in metrics of prosperity, including income, education, and access to housing, jobs, and services. But many of these places, needing such investments the most, do not have development staff or lobbyists in Denver or Washington, D.C.

Map of the Gunnison River drainage basin in Colorado, USA. Made using public domain USGS data. By Shannon1 – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=69257550

In response to these constraints, my organization, the Colorado Farm & Food Alliance, is seeking to assist the North Fork Valley, where we are based, to find these federal and state partnerships that can bring those resources here. And we want to do it in a way that serves as a model for what rural climate leadership looks like.

Crops below solar panels. Credit: NREL

Recently we were the named recipient in a national prize to spur community solar projects. This award is for a collaborative, community-based project that we are helping lead that will pair solar energy and farming in a practice called agrivoltaics. As exciting as this pilot project is, for us and we hope for others watching, it will truly be a success if it is followed by meaningful investments that make more ideas like this possible — such as state policy changes to smooth the way for rural electric co-ops to facilitate and integrate more community solar projects.

For starters, here are three places where smart state and local policy should align to ensure that historic federal investments are making a difference for rural communities.

  1. Expanding community-based rural renewables
  2. Strengthening land and watershed health and resilience
  3. Boosting and incentivizing farm-based ecosystem services

So, while it is the case that the debt-ceiling debate has shifted media and other attention to competing economic needs and proposals, it is worth recounting why investment now in climate action remains more critical than ever.

In our recent report, “Gunnison Basin-Ground Zero in a Climate Emergency,” we lay out clearly the high stakes of failure to act. It all adds up to more human suffering, declining environmental health, and severe economic hardship. Most importantly, though, and on point, is that this report lays out the path for action. It makes the case that western Colorado is particularly well suited to be a national leader in rural-based climate leadership. But to get there, we need government partners that prioritize those outcomes.

We are grateful for federal investments that can drive this type of thoughtful, innovative and scalable climate action, especially for frontline, transitioning, and disproportionately impacted communities. And certainly, Congress ought not “claw back” or otherwise diminish that funding. Climate action is an imperative and rural America should not be left behind.

So we are also eager to see that investment show up in our communities now. We are ready to make a difference before the window for effective climate action slams shut. There is no more time to delay and an incredible opportunity to act. Smart investment now will help rural Colorado, and help all of us to succeed.

2023 #COleg: Agrivoltaics & aquavoltaics, too — @BigPivots #SanLuisValley #ActOnClimate #RioGrande

Canal in the San Luis Valley. Photo credit: Allen Best/Big Pivots

Click the link to read the article on the Big Pivots website (Allen Best):

Colorado will probe the pairing of solar panels with canals and reservoirs. Can solar integrated into agriculture help solve the San Luis Valley’s water woes?

Agrivoltaics—the marriage of solar photovoltaics and agriculture production— has been filtering into public consciousness, if still more as an abstraction than as a reality. In Colorado, other than Jack’s Solar Garden near Longmont, there’s little to see.

Aquavoltics? The idea of putting solar panels above water? Similarly thin. You have to travel to North Park to see the solar panels above the small water-treatment pond for Walden.

SB23-092, a bill passed on the final day of Colorado’s 2023 legislative session, [ed. Signed by Governor Polis May 18, 2023] orders study of both concepts. In the case of aquavoltaics, the bill headed toward the desk of Gov. Jared Polis authorizes the Colorado Water Conservation Board to study the feasibility of using solar panels over or floating on, irrigation canals or reservoirs. The bill also authorizes the state’s Department of Agriculture to award grants for new or ongoing agrivoltaics demonstration projects.

Still another section requires the Colorado Department of Agriculture, in consultation with related state agencies, to begin examining how farmers and ranchers can be integrated into carbon markets. The specific assignment is to “examine greenhouse gas sequestration opportunities in the agricultural sector, including the use of dry digesters, and the potential for creating and offering a certified greenhouse gas offset program and credit instruments.”

While Democrats and Republicans got angry with each other in some cases, in this case there was broad comity. The primary Democratic sponsors were from Denver and Boulder County, and the Republicans from the San Luis Valley and Delta. Votes were lopsided in favor.

The agrivoltaics idea was originally included in the 2022 session in a big suitcase of ideas sponsored by Sen. Chris Hansen, a Democrat from Denver. It fell just short of getting across the finish line.

This past summer, Sen. Cleve Simpson, a Republican from the San Luis Valley whose district now sprawls across southwestern Colorado, took keen interest—and for very good reason. A fourth-generation native of the San Luis Valley, his day job there is general manager of the Rio Grande Water Conservation District, whose farming members must cut back water use so that Colorado can comply with the Rio Grande Compact with New Mexico and Texas. It will be a tough challenge—and he’s trying to figure out how to leave his communities as economically whole as might be possible.

This canal in the South Platte Valley east of Firestone, north of Denver, could conceivably also be a place to erect solar panels without loss of agricultural productivity. Photo/Allen Best

The aquavoltaics idea is new to this year’s bill, though.

Hansen, who grew up along the edge of the declining Ogallala Aquifer in Kansas, said his study of water conservation efforts around the world found that aquavoltaics was one of the most advantageous ways to reduce evaporation from canals and reservoirs. Doing so with solar panels, he said in an April interview, produces a “huge number of compounded value streams.”

Covering the water can reduce evaporation by 5% to 10%, he explained, while the cooler water can cause solar panels to produce electricity more efficiently, with a gain of 5% to 10%. Electricity can in turn be used to defray pumping costs.

Solar panels in cooler climates can actually produce electricity more efficiently, which is why solar developers have looked eagerly at potential of Colorado’s San Luis Valley. At more than 7,000 feet in elevation, the valley is high enough to be far cooler than the Arizona deserts but with almost as much sunshine.

Walden became Colorado’s first location for aquavoltaics when solar panels were placed atop the pond at the water-treatment plant in 2018. Christmas 2020 photo/Allen Best

Colorado already has limited deployment of aquavoltaics. Walden in 2018 became the state’s first location to deploy solar panels above a small pond used in conjunction water treatment. The 208 panels provide roughly half the electricity needed to operate the plant. The town of 600 people, which is located at an elevation of 8,100 feet in North Park, paid for half the $400,000 cost, with a state grant covering the other.

Other water and sewage treatment plants, including Fort Collins, Boulder and Steamboat Springs, also employ renewable generation, but not necessarily on top of water, as is done with aquavoltaics.

Hansen said he believes Colorado has significant potential for deploying floating solar panels on reservoirs or panels installed above irrigation canals. “There is significant opportunity in just the Denver Water reservoirs,” he said. “Plus you add some of the canals in the state, and there are hundreds of megawatts of opportunity here.”

Bighorn, Colorado’s largest solar project, has a 300-megawatt generating capacity on land in Pueblo adjacent to the Rocky Mountain Steel plant  Comanche’s two remaining units have a combined capacity of 1,250 megawatts, although both are scheduled to be retired by 2031.

Why now and not a decade ago for aquavoltaics? Because, says Hansen, most of the best sites for solar were still available. Because aquavoltaics has an incremental cost, land-based solar was the low-hanging fruit.

Now, as land sites are taken, the economics look better, says Hansen, who has a degree in economics. Plus, with solar prices dropping 10% annually, the economics look even better. The Inflation Reduction Act passed by Congress in August 2022 delivers even more incentives. “I think there will be more and more aquavoltaic projects that will pencil out,” he said.

Arizona water providers have resisted aquavoltaics but are now taking a second look. The Gila River Indian Community announced last year that it is building a canal-covering pilot project south of Phoenix with aid of the U.S. Army Corps of Engineers. “This project will provide an example of new technology that can help the Southwest address the worst drought in over 1,200 years,” said Stephen Roe Lewis, governor of the tribe.

When completed, the canal-covered solar project will be the first in the United States. But both the Gila and a $20 million pilot project launched this year by California’s Turklock Irrigation District are preceded by examples in India.

Officials with the Central Arizona Project, the largest consumer of electricity in Arizona, responsible for delivering Colorado River water through 336 miles of canals to Phoenix and Tucson, will be following closely the new projects in Arizona and California, according to a report in the Arizona Republic.

Byron Kominek on a February afternoon at the site of his late grandfather’s farm, which he calls Jack’s Solar Garden. Photo/Allen Best

In its final legislative committee hearing in late April, the bill got robust support. Both the Colorado Farm Bureau and the Rocky Mountain Farmers Union voiced support.

So did a Nature Conservancy representative. “If we want to solve the climate crisis while at the same time not exacerbating biodiversity and farmland loss, we have to think creatively,” testified Duncan Gilchrist.

“This bill has nothing but winners,” said Jan Rose, representing the Colorado Coalition for a Livable Climate.

The most probing questions were directed to Byron Kominek, the owner and manager of Jack’s Solar Garden. There for the last several summers, vegetable row crops have been grown in conjunction with dozens of solar arrays assembled on a portion of the 24-acre farm. He readily receives reporters and all others, casting the seeds of this idea across Colorado and beyond.

The questions were directed by State Sen. Rod Pelton, whose one district covers close to a quarter of all of Colorado’s landscape, the thinly populated southeast quadrant. A farmer and rancher from the Cheyenne Wells area, Pelton wondered how high off the ground the panels were and what kind of racking system was high enough to address the issue of cattle rubbing against them?

The question, though, jibes with what Mike Kruger, chief executive of the Colorado Solar and Storage Association, sees for agrivoltaics. “I don’t think it will ever be ‘amber waves of grain’ under panels,” he said in April. “It will more likely be cattle and sheep grazing.”

Hansen, in his wrap-up comments before the committee in April, talked about different places needing different approaches depending upon climate zones, topography, growing conditions and other factors. That, he said, was the intent of the studies: to figure out how to maximize potential, to get it right.

NREL researcher Jordan Macknick and Michael Lehan discuss solar panel orientation and spacing. The project is seeking to improve the environmental compatibility and mutual benefits of solar development with agriculture and native landscapes. Photo by Dennis Schroeder, NREL

2023 #COleg: How well did the #Colorado legislature protect Mother Nature in 2023? Environmentalists saw some missed opportunities but enough victories to be encouraged — The #Denver Post #ActOnClimate

Coyote Gulch’s shiny new Leaf May 13, 2023

Click the link to read the article on The Denver Post website (Noelle Phillips). Here’s an excerpt:

Environmental advocates said the Democrat-controlled General Assembly created some new policies that should help chip away at air pollution, but the legislators missed out when making changes that could have a sweeping, long-term impact. The successes included a push toward expanded use of electric-powered cars and trucks, lawn equipment and home appliances that should eliminate some greenhouse gas emissions as the state weans itself from a reliance on fossil fuels. But the failures, environmentalists said, hurt the state’s overall goal to get into compliance with the federal Clean Air Act by reducing ozone pollution. The Front Range is listed by the Environmental Protection Agency as being in “severe non-attainment” for failing for years to meet federal clean air standards. On that front, HB23-1294, a bill that would have closed loopholes for new oil and gas permits, was gutted in order to win over Gov. Jared Polis’ support. And a massive land-use bill, which would have benefitted the environment by building more dense housing projects and encouraging people to drive less, failed…

The land-use bill, which would have reshaped how the state plans housing development, was mostly discussed as an answer to Colorado’s affordable housing issues. But SB23-213 was backed by environmentalists, who believed it would reduce sprawl and eliminate people’s reliance on cars by building more dense housing around places where people live, work and play. Denser development also means buildings use less energy and water, said Matt Frommer, senior transportation associate at Southwest Energy Efficiency Project. Frommer said he was so disappointed in the bill’s failure that he had to step away from talking about it for a few days after the session ended…

Kirsten Schatz, a clean air advocate for the Colorado Public Interest Research Group, was pleased that the legislature approved tax credits of up to 30% for Coloradans who buy electric-powered lawn and garden equipment…

Mauna Loa is WMO Global Atmosphere Watch benchmark station and monitors rising CO2 levels Week of 23 April 2023: 424.40 parts per million Weekly value one year ago: 420.19 ppm Weekly value 10 years ago: 399.32 ppm 📷 http://CO2.Earthhttps://co2.earth/daily-co2. Credit: World Meteorological Organization

SB23-016: Greenhouse gas emissions reduction measures

This lengthy bill created multiple measures aimed at reducing greenhouse gas emissions and changes the goals for how fast the state must meet certain benchmarks between 2035 and 2045. The bill created a 30% tax credit for electric lawn and garden equipment and added regulations to how the Colorado Oil and Gas Conservation Commission regulates greenhouse emissions from fracking. Polis signed the bill on Thursday.

Hydrocarbon processing in the Wattenberg Field east of Fort Lupton, Colo., on July 2, 2020. Photo/Allen Best

HB23-1294: Pollution protection measures

This bill requires the Colorado Oil and Gas Conservation Commission to conduct a rulemaking to define, evaluate, and address the cumulative impacts of oil and gas drilling by April 2024. It also updates the complaint process by requiring the commission to respond to public complaints within 30 days, requiring the commission to consider credible evidence of pollution violations.

The bill eliminates a statute of limitations loophole as well as what’s known as the “start-up, shutdown and malfunction” loophole. It also establishes an interim legislative committee to craft more comprehensive legislation tackling these air pollution problems.

The bill is awaiting the governor’s signature and proponents believe he will do so.

Air-source heat pumps at the home of Joe Smyth and Kristen Taddonio in Fraser, Colo. Photo/Joe Smyth

HB23-1272: Decarbonization tax credits

The bill creates a package of tax credits for consumers who buy climate-friendly technology such as electric cars and trucks, electric bicycles and heat pumps. Polis signed the bill on Thursday.

Top view of an induction cooktop. By Erik1980, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1835324

HB23-1161: Environmental standards for appliances

The bill sets tougher emissions standards for new gas furnaces and water heaters sold in Colorado, phases out the sale of fluorescent light bulbs that contain mercury and sets new energy- and water-saving standards for appliances. The bill is on the governor’s desk but has not been signed.

Leaf charging in Frisco September 30, 2021.

HB23-1233: Electric vehicle charging and parking requirements

This bill accelerates the implementation of new electric vehicle charging requirements for new buildings, increasing the availability of charging stations at apartment buildings and condominiums. It also created a standard definition of disproportionately impacted communities to guide the state in establishing environmental programs in the areas that need them the most. The bill has not been signed.

Xcel truck at Shoshone plant. Photo credit: Brent Gardner-Smith/Aspen Journalism

SB23-291: Utility regulation

The bill’s goal was to lower utility bills for Coloradans but environmentalists liked it because it pushes the state further away from a reliance on natural gas. It prohibits utility companies from charging their customers to subsidize natural gas service for new construction projects and requires the Public Utilities Commission to stop charging customers who choose to stop using natural gas. Polis signed the bill on Thursday.

HB23-1134: Electric options in home warranties

A homeowner with a warranty contract can opt for electric alternatives to gas-fueled equipment such as heat pumps. The governor signed the bill on March 31.

Volunteers help to construct the solar system at a low-income, rental-housing subdivision in La Plata County. Photo/LPEA

HB23-1234: Solar permitting

The bill streamlined solar permitting and cut red tape to accelerate the use of solar energy. Polis signed the bill on Thursday.

Graphic credit: City and County of Denver

SB23-253: Compost labeling

The bill creates a standard for labels on products that can be composted, such as trash bags, paper plates, disposable cups and utensils. The bill has not been signed by the governor.

Pesticides sprayed on agricultural fields and on urban landscaping can run off into nearby streams and rivers. Here, pesticides are being sprayed on a soybean field in Iowa. (Credit: Eric Hawbaker, Blue Collar Ag, Riceville, IA)

SB23-266: Pesticide restrictions

This bill limits the sale of neonic pesticides, which are harmful to bees and other pollinators. The bill is awaiting the governor’s signature.

Geothermal Electrical Generation concept — via the British Geological Survey

HB23-1252: Thermal energy

The bill advanced the adoption of clean geothermal energy heating and cooling systems. Polis signed it on Thursday.

Growing eggplants & electricity to benefit both? — @BigPivots #ActOnClimate

Entrance to Mark Waltermire’s 16-acre Thistle Whistle Farm on Colorado’s Western Slope.  Photo credit: Allen Best/Big Pivots

Click the link to read the article on the Big Pivots website (Allen Best):

On Colorado’s North Fork Valley, Mark Waltermire can grow hundreds of varieties of vegetables. He hopes to soon add electricity to his community offering.

At his 16-acre Thistle Whistle Farm on Colorado’s Western Slope, Mark Waltermire has become skilled at converting sunshine into useful products.

He grows several varieties of sweet corn and potatoes, 100 types of hot peppers, close to 50 varieties of sweet peppers, and more than 150 varieties of heirloom tomatoes on his farm near Hotchkiss, in the North Fork Valley. For good measure he also grows ground cherries, bitter melons and long beans. His is a museum of agricultural productivity and possibilities.

By May of 2024, he also hopes to be producing a half-megawatt of electricity in synergy called agrivoltaics.

Thistle Whistle is part of an agrivoltaics project that has been awarded a $50,000 grant from the U.S. Department of Energy, one of 25 grants handed out as part of the National Community Solar Partnership. The program was launched in January in an attempt to further community-based solar projects.

Denver-based SunShare LLC also won a $50,000 award for expansion of a project in New Mexico. It has community solar gardens in Colorado and several other states.

The two Colorado-based programs will be eligible to win grants of up to $200,000 in the next round of the competition. Yet a third stage will offer grants of up to $150,000. The program altogether has $10 million in funding.

In the North Fork Valley project, another small farm is yet to be incorporated. The rules require projects of a megawatt of generation or more and preferably in more than one location. Total production capacity is capped at five megawatts, still well short of the 20 megawatts that defines the lower limit of utility-scale solar.

Waltermire had community goals in mind when he began talking about inserting solar panels amid his rows of vegetables and fruits. He believes in the idea of locally generated electricity and at modest scales.

Personal frustration also drove his quest to pursue agrivoltaics. Sunshine, his benefactor, can be an abuser.

“There are several things I would like to grow but don’t because of the intensity of the sunlight and the heat,” he says. “Agrivoltaics, if set up properly, will enable me to grow things that I love to grow but shy away from in the middle of summer, especially.”

Greens, such as for salads, have been difficult during summer in a valley where mid-summer temperatures often exceed 90 degrees. As for sweet peppers, they grow well but tend to blister when ripening. Waltermire thinks a bit of shade might create what he calls “more gentle” growing conditions.

What does survive the blistering summer sun gets offered at farmers’ markets from Telluride to Aspen and beyond to the Front Range.

Pete Kolbernschlag, director of the Paonia-based Colorado Farm & Food Alliance, the lead in the application, said he hopes to create a model in Delta County for rural climate action.

This is from Big Pivots 74. Please consider subscribing or passing this story along

In growing plants and harvesting electricity, there can be tradeoffs, he says, but the goal here is to figure out where exactly those tradeoffs are maximizing production but also maximizing production of electricity.

“Those are the types of questions we are interested in examining. What are the benefits to both—and where are the tradeoffs, and how do you manage the systems to try to get the best returns from either of those systems?” explains Kolbernschlag.

Water ranks high among the questions that team members hope their project can answer. Specifically, how much can the shade of solar panels aid in retention of soil moisture? And how can soil moisture help cool panels and make them more productive?

Rogers Mesa

Brad Tonnesson, a research scientist at the Rogers Mesa Research Station, has agreed to conduct research into these questions about agrivoltaics.

Whether this project goes forward, though, still remains in doubt. It all comes down to costs and revenue. Can Waltermire and other small farmers create enough revenue to offset their investments? The local electrical cooperative, Delta-Montrose Electric, will accept the electricity, but still to be determined is how much it will pay.

Waltermire says he also needs to get funding before he can realistically start planning what he will grow next year.

This project must be seen as a decidedly small-scale venture with an emphasis on local and community. Larger projects have provoked animosity.

For example, an October 2022 story in the Guardian (‘It got nasty’: the battle to build the US’s biggest solar power farm) told a story from Indiana where 13,000 acres of prime farmland have been targeted for solar panels. A wealthy landowner has set out to defeat the proposal, and—well, the headline sums it up.

“The ongoing fight is a sobering reminder of how (President Joe) Biden’s ambitions for a mass transition to renewables, aimed at averting the worst ravages of the climate crisis, will in significant part be decided by the vagaries and veto points of thousands of local officials, county boards and (organized) opposition (by wealthy landowners) across the U.S,” the Guardian says.

That same article points to both sources of tensions and irony amid these fields of primarily corn.

One of the farmers who wants to lease 1,750 acres of his land for the solar project sees “solar is an evolution of farming rather than a betrayal of it. He already harvests the sunlight for his crops, he reasons. He considers fears of food shortages taking land out of production overblow given that 40% of all U.S. corn is already mashed up for another form of energy—ethanol, which is added to gasoline. Farmers are also routinely paid by the federal government to keep tracts of land free from crops, in order to bolster the price of corn.”

As for local economic benefits, that same farmer In Indiana says he will make five times more from leasing his land for harvesting and converting sunlight into electricity than he gets for growing corn.

Steve Ela grows apples and other fruit in his orchards near Hotchkiss for sale at farmers’ markets along the Front Range. 2017 photo/Allen Best

Colorado has no large-scale plans at the same stage for solar. NextEra Energy and a corporate farmer, Crossroads Agriculture, recently announced their plans for one gigabyte of energy, although on dryland and not irrigated farmland. See: â€œA gigawatt of solar in Colorado’s wheat country.”

Xcel Energy has been taking bids and very likely has some other interesting and ambitious proposals for solar farms along its 550- to 600-mile (and $1.7 to $2 billion) high-voltage transmission line looping around eastern Colorado.

In Delta County, a far, far smaller proposal ignited controversy. That 80-megawatt project on Garnett Mesa was vetoed by county commissioners in response to opposition from neighbors who objected to industrial power production in an agricultural setting. Guzman Energy and others, agreed to run sheep amid the panels, and the commissioners approved it.

The North Fork team envisions something much smaller a megawatt or two instead of 80 or 8,000.

“It will take a lot of different approaches to get the energy we need from renewables, and where we locate them and how we can co-locate them with other uses will be super important questions,” says Kolbernschlag.

This is not the only model, he explains, but rather one that is community scale and with direct community benefits.

“Innovative solar projects involving agrivoltaics and community ownership models promise significant benefits for rural agricultural communities, and there isn’t a better place than the Western Slope to demonstrate that potential and to provide a model that can be replicated,” says team member Alex Jahp, who works at Paonia-based Solar Energy International, which trains solar installers.

Jahp also points to Delta County’s warming climate. “Delta County is one of the places facing the worst effects of climate change in terms of temperature rise,” he points out.

At his farm, which he has been working for 18 years, Waltermire says he hasn’t necessarily detected warming and aridification trends. What he is confident he has sene is greater variability. “Just crazy weather events seem to be more common,” he says.

What drew him to farming? “It does seem like I have found my passion, and the challenge is to make it work. I would be unhappy if I didn’t have a challenge in life,” he says. He also has found that being part of a community and playing a supportive role in that community is crucial to his happiness.

In that, making electricity just might complement growing eggplants.

Allen Best is a Colorado-based journalist who publishes an e-magazine called Big Pivots. Reach him at allen.best@comcast.net or 720.415.9308.

Map of the Gunnison River drainage basin in Colorado, USA. Made using public domain USGS data. By Shannon1 – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=69257550

After a four-year campaign, New York says yes to publicly owned renewables: The state has set ambitious climate targets. Now it’ll build the clean energy it needs to meet them — Grist #ActOnClimate #KeepItInTheGround

Wind turbines and electrical substation of Alpha Ventus Offshore Wind Farm in the North Sea. By SteKrueBe – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=17009450

Click the link to read the article on the Grist website (Akielly Hu):

On Tuesday [May 2, 2023], New York lawmakers passed a law that, for the first time, authorizes the New York Power Authority — the largest state public power authority in the U.S. — to build renewable energy projects to help reach the state’s climate goals. 

The new Build Public Renewables Act, passed as part of New York’s annual budget, is a culmination of four years of organizing by climate and community organizations, and has been heralded as a major win by energy democracy, environmental justice, and labor groups. 

“This will enable us to build renewable energy projects with gold-standard labor language, ensuring that the transition to renewable energy benefits working people and their families,” Patrick Robbins, an organizer with the grassroots Public Power NY Coalition, told Grist. 

The new law directs the New York Power Authority to plan, construct, and operate renewable energy projects in service of the state’s renewable energy goals. Under New York’s 2019 Climate Leadership and Community Protection Act, the state aims to generate 70 percent of its electricity from renewables and cut overall greenhouse gas emissions by 40 percent by 2030.

The Build Public Renewables Act includes several provisions to prioritize clean energy access for low- and middle-income customers, organized labor, and a just transition for workers displaced from fossil fuel projects. It requires the New York Power Authority to establish a program allowing low- and moderate-income electricity customers in disadvantaged communities to receive credits on their monthly utility bills for any renewable energy produced by the power authority. 

The new law also stipulates that workers or contractors hired for these new renewable energy projects must be protected by a collective bargaining agreement. And it instructs the public power authority to enter into a memorandum of understanding with labor unions to uphold and protect pay rates, training, and safety standards for workers supporting the operation and maintenance of such projects. Candidates who have lost employment in the oil and gas sector will be prioritized for those positions. Beginning in 2024, the authority will also be authorized to allocate up to $25 million each year toward worker-training programs for the renewable energy sector.

Activists applaud a provision to phase out so-called peaker power plants owned by the New York Power Authority by 2030 and replace them with renewable energy systems. These small natural gas power plants quickly start and stop during times of peak energy demand, typically in the summer, when air-conditioning use ramps up. They are also a major source of pollution and sickness for nearby communities. 

In a 2021 report, a coalition of state environmental justice groups found that 78 percent of residents living within one mile of the plants are either low income or people of color. The report also found that peaker plants contribute up to 94 percent of New York’s nitrogen oxide pollution, a key component of smog, on high-ozone days.

The law had been introduced — and failed to pass — the last two consecutive years before finally passing this year. New York state Assembly Member Sarahana Shrestha, elected this past November, was a key force in pushing the legislation through the state assembly. Before serving in the assembly, she was an organizer with the Public Power NY Coalition and the New York chapter of the Democratic Socialists of America, helping to rally around the Build Public Renewables Act. She ran on a climate campaign aligned with the public power movement, which aims to shift energy utilities from the traditional investor-owned, private model to public ownership and democratic governance. 

To Shrestha, the new law addresses “fundamental questions like who should own energy, who should serve energy, at what cost, and what kind of energy should we be making, and who should be deciding those things.”

The bill prevailed despite opposition from groups including the Independent Power Producers of New York, a trade association of energy companies working in renewables and fossil fuels, and the Alliance for Clean Energy New York, a coalition of renewable energy businesses. 

In a joint letter to New York Governor Kathy Hochul, the two organizations and four other groups stated that having the public power authority build renewables “does not create a level playing field with the private sector.” They also raised concerns that the law does not address ongoing barriers to clean energy development in New York, such as delays in connecting to transmission systems and permitting. 

Proponents of the law argue that industry resistance was outweighed by broad support from community-based organizations, environmental justice groups, and unions representing more than 1 million workers in New York.

Another factor in the law’s successful passage was last year’s Inflation Reduction Act, President Joe Biden’s landmark climate spending legislation. The federal law provides newly expanded tax credits for renewables and makes them available to tax-exempt public power entities like the New York Power Authority. 

Shrestha and other advocates hope that the new Build Public Renewables Act will inspire similar legislation in other states — and they’re already seeing local Democratic Socialists of America chapters and other advocacy groups reach out. 

“The reason I am excited about this win is not because our work is done, but now it means we can start our work,” Shrestha said. 

Rural Renewables & Agrivoltaics Get a Leg Up in North Fork Valley — #Colorado Farm & Food Alliance

NREL researcher Jordan Macknick and Michael Lehan discuss solar panel orientation and spacing. The project is seeking to improve the environmental compatibility and mutual benefits of solar development with agriculture and native landscapes. Photo by Dennis Schroeder, NREL

Here’s the release from the Colorado Farm & Food Alliance:

PAONIA, CO. (April 20, 2023) – Today the Colorado Farm & Food Alliance was named by the National Community Solar Partnership (NCSP) as a recipient of a Community Power Accelerator Phase 1 prize to study and advance community-owned farm-based renewable projects in the North Fork Valley.

The Community Power Accelerator Prize is a U.S. Department of Energy led initiative to spur development of community-owned solar and renewable projects. The North Fork award is for a collaboration that involves the CO Farm & Food Alliance and other organizations, community leaders and businesses. In March this group submitted a proposal to help plan a small solar project that will benefit area farms and farm-related businesses and to use that project as a springboard for additional renewable energy to benefit rural communities. Phase 1 prize recipients can compete for additional awards.

“Our goal is to promote rural climate leadership and to show that the clean energy transition can support agriculture, boost local enterprise, and work toward greater energy equity,” said Pete Kolbenschlag, director of the Colorado Farm & Food Alliance. “We are extremely excited to move our project forward, and we see it as a model for rural climate action that puts land health, people and local community first.”

The North Fork team first coalesced around a small agrivoltaic project being scoped near Hotchkiss, and saw this as an opportunity to consider how the area might advance more community-owned renewables that integrate with agriculture and serve local residents. 

“We see agrivoltaics as part of our effort to pursue sustainability, adding renewable energy to our efforts to improve the health of our land and soil and to better feed our local community,”  said Mark Waltermire, owner of Thistle Whistle Farm in Hotchkiss, Colorado. “This project will give a handful of farms like this one, and a few food-related businesses that use our produce, a way of accessessing cleaner power, while benefiting our farm by giving us more gentle growing conditions under the panels to grow some of our crops. Our whole farm community benefits. And, we can set the stage for similar projects in areas around the valley that can help other producers,” he added.

Agrivoltaics is an emerging field of solar development that is paired with agriculture. In the U.S. Southwest, as we head into a warmer and drier future, interest in agrivoltaics, as a means to adapt farming to a changing climate while co-locating clean energy production, is high. Some studies show that growing certain crops under solar panels can provide shade benefits, help regulate soil-moisture, and can also help to cool the panels, which increases their efficiency. 

Rogers Mesa

The projects being considered by the North Fork team will involve working agriculture, grid energy production, and scientific research conducted in partnership with the Colorado State University Western Colorado Research Center at Rogers Mesa, to gather more data on how renewable energy and agriculture can co-exist and can even benefit each other. 

“Innovative solar projects involving agrivoltaics and community ownership models promise significant benefits for rural agricultural communities and there isn’t a better place than the Western Slope to demonstrate that potential and to provide a model that can be replicated,” said team-member Alex Jahp, who works at Paonia-based Solar Energy International. “Receiving the Community Power Accelerator Prize demonstrates that we aren’t alone in our thinking.” 

The North Fork Valley is named after a major stem of the Gunnison River, which is the second largest tributary to the imperiled Colorado River system. The region is at the epicenter of the global climate emergency, as a critical headwaters area and due to its heating at a more rapid rate than many places in the nation. The North Fork Valley is home to both the state’s largest operating coal-mine and its highest concentration of organic farms. Many in the region still see both agriculture and energy as key parts of a diverse economic future, but also see the critical need to act to address climate change. 

“With Delta County warming double the national and global average, the impacts of local warming are upon us. Building community resilience–through community-driven projects like the ones being considered here, at the nexus of agriculture, water, and energy–is critical if we are to survive and thrive” said Natasha LĂŠger, Executive Director, Citizens for a Healthy Community. She added that “farms play a critical role in transitioning away from oil and gas as energy sources for running farm operations, and will be leadership models for new approaches to land use.” 

Citizens for a Healthy Community has recently completed a Climate Action Plan for Delta County, hoping to help local governments act more boldly to address the climate crisis. In its recent report, Gunnison Basin: Ground Zero in the Climate Emergency, the Colorado Farm & Food Alliance also made a pitch for the potency of rural-based climate action – including the expansion of farm-based renewables. The North Fork Valley agrivoltaic team is not waiting to act.

“The Community Power Accelerator Prize is a key award that will allow us to take the great work already being done by local community groups and turn it into tangible results,” said Kolbenschlag on behalf of the Colorado Farm & Food Alliance which accepted the prize for the community collaboration. “We have an exceptional team and an exceptional project. We think this can be a model for rural climate action and community resilience. We thank the Department of Energy and Solar Partnership for this opportunity to prove it.” 

Gunnison River Basin. By Shannon1 – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=69257550

2023 #COleg: #Colorado lawmakers consider pilot projects that combine #solar energy with #water conservation — @WaterEdCO

Grays and Torreys, Dillon Reservoir May 2017. Photo credit Greg Hobbs.

Click the link to read the article on the Water Education Colorado website (Allen Best):

Colorado lawmakers on Thursday, April 13, will hear why Colorado should study the nexus of solar energy and water. Aquavoltaics, as this still-emerging practice is known, positions solar panels above canals and other water bodies.

The marriage, proponents say, can save water by reducing evaporative losses while boosting the amount of electricity solar panels generate.

The proposal is part of a bill, SB23-092, that will be heard by the Senate Transportation and Energy Committee.

That same bill also proposes to nudge development of agrivoltaics, where solar production occurs simultaneously with agricultural production. A similar agrivoltaics bill was introduced last year, but was not passed. Aquavoltaics is new to this year’s bill.

State Sen. Chris Hansen, D-Denver, a principle sponsor of both bills, said his study of water conservation efforts around the world found that aquavoltaics was one of the most advantageous ways to reduce evaporation from canals and reservoirs. Doing so with solar panels, he says, produces a “huge number of compounded value streams.”

Covering the water can reduce evaporation by 5% to 10%, he says, while the cooler water can cause solar panels to produce electricity more efficiently, with a gain of 5% to 10%. Electricity can in turn be used to defray costs of pumping water.

Solar panels in cooler climates produce electricity more efficiently, which is why solar developers have looked eagerly at the potential of Colorado’s San Luis Valley. At more than 7,000 feet in elevation, the valley is high enough to be far cooler than the Arizona deserts but with almost as much sunshine.

Colorado already has limited deployment of aquavoltaics. Walden in 2018 became the state’s first community to deploy solar panels above a small pond used in conjunction with water treatment. The 208 panels provide roughly half the electricity needed to operate the plant. The town of 600 people, which is located at an elevation of 8,100 feet in North Park, paid for half of the $400,000 cost, with a state grant covering the rest.

Other water and sewage treatment plants, including Fort Collins, Boulder and Steamboat Springs, also employ renewable generation, but not necessarily on top of water, as is done with aquavoltaics.

As introduced, the bill would authorize the Colorado Water Conservation Board to “finance a project to study the feasibility of using aquavoltaics.”

Hansen said he believes Colorado has significant potential for deploying floating solar panels on reservoirs or panels above irrigation canals. “There is significant opportunity in just the Denver Water reservoirs,” he said. “Plus you add some of the canals in the state, and there are hundreds of megawatts of opportunity here,” he said.

Other Western states are also eying the technology.

Arizona’s Gila River Indian Community announced last year that it is building a canal-covering pilot project south of Phoenix with the aid of the U.S. Amy Corp of Engineers. “This project will provide an example of new technology that can help the Southwest address the worst drought in over 1,200 years,” said Stephen Roe Lewis, governor of the tribe.

When completed, the canal-covering solar project will be the first in the United States.

But both the Gila and a $20 million pilot project launched this year by California’s Turlock Irrigation District are preceded by examples in India.

Officials with the Central Arizona Project (CAP), a major user of Colorado River water and the largest consumer of electricity in Arizona, will be closely following the pilot projects in Arizona and California, according to a report in the Arizona Republic. In the past, both CAP and the Salt River Project, two of the largest water providers in Arizona, have cited engineering challenges of aquavoltaics.

The new Colorado bill also would authorize the Colorado Agricultural Drought and Climate Resilience Office to award grants for new or ongoing demonstration or research projects that demonstrate or study the use of agrivoltaics. This is to be overseen by a stakeholder group.

Mike Kruger, chief executive of the Colorado Solar and Storage Association, says his members want to see the most expansive definition of eligible projects possible. “I don’t think it will ever be ‘amber waves of grain’ under panels. It will more likely be cattle and sheep grazing,” he says.

That is indeed what will be happening near Delta. There, a solar project was proposed near an electrical substation with the intent of serving the Delta-Montrose Electric Association. Neighbors objected, and the county commissioners rejected it in a 2-to-1 vote. The project developer returned with a revised project, one that calls for sheep grazing to occur amid the solar panels. This revised proposal passed in a 3-to-0 vote.

Hansen says this is exactly the model he expects to see play out in the contest between devoting land for agriculture and for renewable power generation.

“What is clear is that county commissions do not want the fight between solar and agriculture if they can help it,” says Hansen. He cites the Delta County case as a prime example.

“If you combine it with grazing, we are going to say yes, and that’s exactly what the Delta County commissioners did. That is why I see this as one of the ways to address the fight between solar and agriculture.”

Allen Best is a frequent contributor to Fresh Water News. He also publishes Big Pivots, an e-journal that chronicles the energy and water transitions in Colorado and beyond.

How can Holy Cross possibly leap this high? — @BigPivots #ActOnClimate #KeepItInTheGround

Mountain of the Holy Cross Creator: Jackson, William Henry, 1843-1942. View of Mount of the Holy Cross in the Sawatch Range, Eagle County, Colorado. Shows snow on a mountain peak, rocky ridges and talus. Date: 1892? Credit: Denver Public Library Digital Collections

Click the link to read the article on the Big Pivots website (Allen Best):

Glenwood Springs-based cooperative says it can leap from 50% emission-free energy to 92% by next year—despite owning a coal plant. Exactly how do this work? Is it a model for others?

Let’s start with the obvious. The sun doesn’t always shine and, except for springtime in Colorado, the wind doesn’t always blow.

So how can Holy Cross Energy, which serves the Vail, Aspen, and Rifle areas, achieve 92% emission-free energy in 2024? Last year it was 50%.

And if Holy Cross can do it, what is possible for utilities serving Crested Butte and Steamboat Springs, Holyoke and Crestone, Sterling and Pueblo?

By the way, Holy Cross still owns 8% of Colorado’s newest coal plant, Comanche 3.

Directors of Holy Cross several years ago adopted what seemed like the audacious goal of achieving 100% emissions-free power by 2030. Municipal utilities serving Aspen and Glenwood springs already have 100% renewables, but do not own their own generation.

I expected small steps. Wind and solar have become far less expensive than coal or gas. But what windless, sunless days?

Resource adequacy has become a major question in this energy transition. Coal plants, if sometimes down, are far more reliable than wind and sunshine. Now we’re hurriedly closing those high-priced and polluting plants. Natural gas can respond quickly to demand. However, those plants are costly and pollute, too.

Do we need more natural gas plants?

Colorado’s two largest electrical providers, Xcel Energy and Tri-State Generation and Transmission, both say they can reduce carbon emissions 80% carbon by 2030 as compared to 2005 levels. But both have refrained from embracing higher, short-term goals.

Tri-State, which delivers power to 17 of the state’s 22 electrical cooperatives, warns of ambitions outpacing realities. Duane Highley, the chief executive, likens resource adequacy to a “big bad wolf.” The Western Energy Coordinating Council in December warned that Western states risked having insufficient resources by 2025 to meet electric demand on the grid they share.

Storage will be crucial. Lithium-ion batteries, if increasingly more affordable, can store electricity for just a few hours. We need technologies that can store energy for days if not weeks. Xcel Energy will be testing one such long-term technology, called iron-air, at Pueblo. Colorado wants to be part of the elusive answer to hydrogen, perhaps using existing electricity infrastructure at Brush or Craig. And transmission and other new infrastructure, such that could allow Colorado to exploit the winds of Kansas or the sunshine of Arizona, can help—but remains unbuilt.

Holy Cross actually has the second lowest electrical rates among Colorado’s 22 electrical cooperatives. And its rates are 5% less than those of Xcel. This is not Gucci electricity, a Tesla Model X Plaid. The Aspen Skiing Co. and Vail Resorts make snow with some of Colorado’s lowest electricity rates.

Holy Cross Energy owned 8% of Comanche 3 when the coal-burning unit at Pueblo began operations in 2010, when this photo was taken, and it still does. It has assigned output of the power to Guzman Energy. Photo/Allen Best

Bryan Hannegan, the chief executive and head wizard at Holy Cross, laid out his utility’s broad strategy in recent presentations to both state legislators and the Avon Town Council. Holy Cross, he explained, will add new wind from eastern Colorado and several new solar-plus-storage projects within its service territory.

The cooperative also intends to integrate new storage in homes and businesses. It incentivizes home batteries that can be tapped as needed to meet demand from neighborhoods. Holy Cross also wants to integrate vehicle batteries, such as from electric school buses, in its efforts to match demands with supplies. Time-of-use rates will be crucial. This market mechanism aims to shift demands to when renewable electricity is most readily available — and cheapest.

Importantly, Holy Cross expects to achieve this high mark without need of new natural gas capacity. Many environmentalists loathe the idea of new and rarely used – but always expensive – natural gas plants. Most utilities see even more gas  generation as necessary.

Speaking to the Avon council, Hannegan expressed confidence Holy Cross can meet growing demand from electric vehicles, heat pumps, and other uses. He called it “smart electrification.”

Holy Cross’s journey from 92% to 100%, though, will “be a bit of a doozie,” he said. He likened it to the climb from Camp 4 on Everest to the peak.

“We have to think about how we balance (supply and demand) at every location on our grid at every moment of every day,” he said. That “fine-grained balancing” will be “quite an engineering challenge. There is reason we have given ourselves six years” to figure this out.

What about that coal plant that Holy Cross still owns? Does that muck up the math? Can Holy Cross truly claim 92% ? And what prevents other utilities from following in its footsteps? These are questions I will ask Holy Cross and others in coming weeks.

PacifiCorp plans to accelerate shift from coal to renewable energy — @WyoFile #KeepItInTheGround

A substation collects power from the Jim Bridger plant to connect to the electrical grid Jan. 19, 2022. (Dustin Bleizeffer/WyoFile)

Click the link to read the article on the WyoFile website (Dustin Bleizeffer):

Wyoming’s largest utility will either retire or convert #coal-fired units to natural (#methane) gas, sparing only two coal-burning units in the state beyond 2030

Wyoming coal will play a shrinking role in PacifiCorp’s energy supply portfolio as the utility adds more wind and solar power and either retires or converts its coal-fired power units in the state to natural gas.

Only two of the utility’s 11 coal-fired power units currently operating in the state will continue burning coal beyond 2030 — Wyodak near Gillette and Unit 4 at the Dave Johnston plant in Glenrock — according to the utility’s biennial Integrated Resource Plan filed on Friday. Several coal units will be spared from earlier decommissioning plans and instead be converted to natural gas — Jim Bridger units 3 and 4 in 2030 and Naughton units 1 and 2 in 2026. 

Dave Johnston Unit 3 will be retired in 2027, and units 1 and 2 will be retired in 2028 rather than 2027.

All told, PacifiCorp will cut its coal-fired power generation capacity across its six-state operating region by 1,153 megawatts by 2026 and 3,000 megawatts by 2032, and replace it with wind and solar energy, battery storage, nuclear power, wholesale power purchases and energy efficiencies, according to the company, which operates as Rocky Mountain Power in Wyoming.

PacifiCorp plans a major shift from coal to solar, wind, nuclear and battery storage. (PacifiCorp)

“Our Integrated Resource Plan is designed to determine the lowest-cost options for customers, adjusting for risks, future customer needs, system reliability, market projections and changing technology,” said Rick Link, who serves as PacifiCorp senior vice president of resource planning, procurement and optimization.

No carbon capture for coal

One option that doesn’t fit those parameters is retrofitting decades-old coal-fired power units with carbon capture, use and sequestration technologies. PacifiCorp also filed a mandatory report to the Wyoming Public Service Commission Friday to update officials on its call for bidders to possibly install CCUS facilities at its coal units in the state — an action mandated by Wyoming law.

“Through 2042, the [analysis] for all CCUS variants result in higher costs than the preferred portfolio,” PacifiCorp said in its 48-page report. The summary suggests it will cost Wyoming ratepayers “$514 million [to retrofit] Dave Johnston Unit 2, $857 million for Dave Johnston Unit 4, and $1.3 billion for Jim Bridger units 3 and 4.”

Of the 54 companies that PacifiCorp sought bids from, only 21 qualified and only three participated in mandatory site visits, PacifiCorp said. The bidding and analysis also confirmed that adding CCUS to an existing coal-fired power unit drastically reduces a facility’s generation capacity, which would require replacing that lost capacity.

PacifiCorp is still working with vendors to explore the potential for taking on CCUS retrofits, however.

Three of four coal-burning units at PacifiCorp’s Dave Johnston coal-fired power plant near Glenrock will be decommissioned by 2028, according to the utility’s 2023 Integrated Resource Plan. (Dustin Bleizeffer/WyoFile)

“The company has determined that Dave Johnston Unit 4 and Jim Bridger units 3 and 4 remain potentially suitable candidates for CCUS and are being further analyzed under the company’s RFP process approved by the [Wyoming Public Service Commission] in the initial application,” PacifiCorp said in its report.

CCUS retrofits remain a significant cost and power-delivery-reliability risk for Wyoming ratepayers, Powder River Basin Resource Council Chairman David Romtvedt said.

“Ratepayers should not be asked to cover the costs of uneconomical energy projects,” Romtvedt said in a prepared statement. “Instead, we support the addition of cost effective and environmentally responsible renewable energy sources to the company’s overall energy profile.”     

Renewable shift and potential nuclear

PacifiCorp’s updated Integrated Resource Plan, which looks ahead 20 years, includes quadrupling its wind and solar resources to 20,000 megawatts by 2032, backed with an additional 7,400 megawatts of energy storage.

The utility still envisions taking ownership of TerraPower’s Natrium nuclear energy facility at Kemmerer — which is expected to begin operating in 2030 — and possibly taking on two more small modular reactors co-located at coal plants in Utah.

Utility giant PacifiCorp hopes to achieve net-zero greenhouse gas emissions by 2050. (PacifiCorp)

The expansion of renewable and low-carbon electric generation facilities is accompanied by approximately 2,500 miles of new transmission lines, many of which will connect Wyoming renewable sources to PacifiCorp service territories in the West. All told, the power shift and transmission buildout should result “in a system-wide 70% reduction of greenhouse gas emissions from 2005 levels by 2030, an 87% reduction by 2035 and a 100% reduction by 2050,” PacifiCorp reported.

Paramount to those greenhouse gas emission savings is curbing the utility’s reliance on coal.

“Driven in part by ongoing cost pressures on existing coal-fired facilities and dropping costs for new resource alternatives, of the 22 coal units currently serving PacifiCorp customers, the preferred portfolio includes retirement or gas conversion of 13 units by 2030 and 20 units by year-end 2032,” PacifiCorp said.

Though it remains to be seen how PacifiCorp’s shift away from coal and toward a lower-carbon energy portfolio will affect jobs and revenue in the state, the company’s plan acknowledges a larger energy industry shift and opportunities for the state, according to Romtvedt. 

“Greater use of renewable energy will help us to ease the dislocation caused by the transition away from extractive resources while developing a more sustainable energy future that can support stable economies in our communities,” he said.

Colorado Public Utilities Commission gets favorable comments on #SanLuisValley #solar energy development — @AlamosaCitizen #ActOnClimate #KeepItInTheGround

A solar farm off CO 17 in Alamosa County. Photo credit: Owen Woods/Alamosa Citizen

Click the link to read the article on the Alamosa Citizen website (Chris Lopez):

HERE are two consistent threads in comments submitted to the Colorado Public Utilities Commission around its investigation into solar energy and transmission development in the San Luis Valley.

The first is that the Valley’s sun is perfectly suitable for renewable solar energy and the cost to develop it is as low as it has ever been. The second is that transmitting the solar energy and sharing it with the rest of Colorado is the challenge due to the difficulty of establishing new transmission routes in the mountainous region.

“The SLV is generally regarded as having the best solar resource in Colorado, and among the best in the United States. The Valley’s flat, high-elevation geography and dry and sunny climate is conducive to large-scale solar developments,” Public Service Company of Colorado told the CPUC in February. 

“In fact,” according to comments relayed by the Interwest Energy Alliance and Western Resource Advocates, “the National Renewable Energy Laboratory (NREL) identified the Valley as the premier site for Concentrated Solar Power (CSP) siting in the state of Colorado.”

The background

Last November the Colorado Public Utilities Commission opened a miscellaneous docket proceeding  to look at the potential value in a new transmission solution into and out of the San Luis Valley. Then in December the CPUC board agreed to move forward with an investigatory proceeding to “examine alternative options for expanding transmission capacity within the San Luis Valley.”

The state regulatory agency has not signaled any additional steps since it closed its comment period in February on solar and transmission development in the San Luis Valley. The Colorado Public Utilities Commission will get a new director following the retirement of Doug Dean and the timing of when it proceeds with its San Luis Valley review is unclear.

‘Part of it is solar irradiance’

It’s the output of light energy from the entire disk of the Sun – or solar irradiance â€“ that makes the sun in the Valley suitable for solar energy development. “It is imperative that this potential resource is not hampered by lack of transmission,” the Interwest Energy Alliance and Western Resource Advocates said in their joint comments.

EARLIER

Valley poised to become a hub of renewable solar generation

“Larger transmission interconnection to the rest of Colorado and the wider western interconnect could have profound implications for job growth and diversification in the SLV as well,” they noted.

The Colorado Energy Office is also on board with solar and transmission development in the Valley. In comments to the CPUC, Colorado Energy Office said it is working through the U.S. Department of Energy to help secure funding for transmission development. The DOE, as part of the Bipartisan Infrastructure Law, announced a $10.5 billion investment to strengthen the electric grid in the United States through its Grid Resilience and Innovation Partnerships Program.

“Additional capacity will enable connecting new solar resources to the grid that can help advance the state’s transition to clean, renewable energy,” the Colorado Energy Office offered in its comments. “Additionally, the construction of transmission lines and the subsequent construction of solar facilities in the SLV would provide substantial economic benefits to a portion of the state that has historically had lower economic growth.”

Comments to the Colorado Public Utilities Commission note the ongoing reduction of irrigated agriculture as San Luis Valley farmers come into compliance with the state’s groundwater pumping rules and work to restore the aquifers of the Upper Rio Grande.

“By having a robust transmission system, landowners will have an alternative to put their property to good use and help create jobs for the area,” Monte Vista City Manager Gigi Dennis wrote in her comments to the CPUC. “And in considering water scarcity in Colorado and from the Rio Grande River, valuable land will be put to beneficial use with solar farms rather than a crop that is thirsty for water. This is good conservation.”

Transmission challenge

In a 2022 report, the National Renewable Energy Laboratory in Golden notes, “The cost of solar power in the Valley compares favorably to utilities’ current and recent historical costs” but that the market demand for a solar project is uncertain given the regulatory process.

“Many alternatives exist in Colorado that can serve the same demand at the same cost but with fewer transmission limitations. The game-changing factor would be a decision by Xcel Energy and the Tri-State Generation and Transmission Association to upgrade the 230kV line from the Valley to Poncha Springs, Colorado, which would add as much as 600 MW of new export capacity, or four times the solar capacity currently in the Valley.”

In comments to the CPUC, Public Service said “many factors have changed over the past decade that merit a thorough reconsideration of new investments transmission to unlock the Valley’s solar resources. Increasing cost-effectiveness of new renewable resources, load growth, the state and federal policies that promote or require carbon emissions reduction from electric generation required another paradigm shift in planning for the expansion of the transmission system.”

Identifying new transmission routes to match solar energy generation is separate from the ongoing work Xcel Energy is doing in upgrading the existing transmission system in the Valley through major line rebuilds. Public Service said it will invest around $115 million in modernizing the Valley’s transmission system, including an upcoming replacement of the Alamosa to Antonito transmission line.

There are three transmission lines that connect the Valley to Colorado’s transmission grid, Public Service notes. These three lines all begin in Poncha Springs in Chaffee County and enter the northern edge of the Valley over the 9,010-foot elevation Poncha Pass. “Today, transmission service to the Valley is radial in nature – the system is connected to the electric grid from one location and is not networked with other parts of the Public Service or neighboring transmission systems through a separate path.”

Public Service, Tri-State Generation and Transmission Association, the U.S. Department of Energy (DOE) and the Bureau of Land Management have all studied alternative transmission routes in the San Luis Valley. More than a decade ago, Public Service and Tri-State gained approval from the Colorado Public Utilities Commission to develop an approximately 95-mile “Calumet transmission line” on the eastern edge of the Valley but ran into concerns from private landowners, including Trinchera Ranch owner Louis Bacon.

Ultimately, following a legal challenge in Costilla County District Court, Public Service and Tri-State officially bowed out of the project. Blanca Ranch Holding, LLC and Trinchera Ranch Holdings, LLC have filed a notice of participation with Colorado Public Utilities Commission for the next round of discussions on where to site new transmission routes in the Valley.

“Transmission expansion in the SLV will require sustained attention and political capital by a broad variety of stakeholders and will entail the coordination of resources to solve challenges with reliability, technology, geography and land use, wildfire risk, and cost,” Public Service said in its comments.

As Tri-State notes, routing challenges exist along all five of the state highways out of the Valley: Highway 160 over Wolf Creek; Highway 114 over North Pass; Highway 285 north over Poncha Pass; Highway 160 east over La Veta Pass; and Highway 285 south toward New Mexico.

Rio Grande del Norte National Monument via the Bureau of Land Management

“Routing challenges exist along each of these highways as they each run through (or near) land held by the Bureau of Land Management (BLM), US Forest Service, National Park Service, Fish and Wildlife Service, Bureau of Reclamation, and Bureau of Indians Lands. Further, some land is subject to a conservation easement (in the case of Trinchera and Blanca Ranch), is part of a National Park (Great Sand Dunes), or is part of a National Monument (Rio Grande del Norte).”

And therein lies the challenge: The San Luis Valley has the sun to generate solar energy as a redundant source of power for itself and to share with the rest of the state. Transmitting it is where the problems begin.

JOIN US

Alamosa Citizen members get the Monday Briefing sent directly to their In boxes – plus a weekly newsletter on Thursdays that summarizes the top stories in the Valley. Member support keeps The Citizen free for all to read.

BECOME A MEMBER

Q&A: #IPCC wraps up its most in-depth assessment of #ClimateChange — @CarbonBrief #ActOnClimate #KeepItInTheGround

Delegates at the IPCC meeting in Interlaken, Switzerland, on 18 March 2023. Credit: IISD

Click the link to read the article on the Carbon Brief website (Aruna Chandra, Daisy Dunne, Orla Dwyer, Simon Evans, Robert McSweeney, Ayesha Tandon, and Giuliana Viglione)

The final part of the world’s most comprehensive assessment of climate change – which details the “unequivocal” role of humans, its impacts on “every region” of the world and what must be done to solve it – has now been published in full by the UN’s Intergovernmental Panel on Climate Change (IPCC).

The synthesis report is the last in the IPCC’s sixth assessment cycle, which has involved 700 scientists in 91 countries. Overall, the full cycle of reports has taken eight years to complete.

The report sets out in the clearest and most evidenced detail yet how humans are responsible for the 1.1C of temperature rise seen since the start of the industrial era.

It also shows how the impacts of this level of warming are already deadly and disproportionately heaped upon the world’s most vulnerable people.

The report notes that policies in place by the end of 2021 – the cut-off date for evidence cited in the assessment – would likely see temperatures exceed 1.5C this century and reach around 3.2C by 2100.

In many parts of the world, humans and ecosystems will be unable to adapt to this amount of warming, it says. And the losses and damages will “escalate with every increment” of global temperature rise.

But it also lays out how governments can still take action to avoid the worst of climate change, with the rest of this decade being crucial for deciding impacts for the rest of the century. The report says:

“There is a rapidly closing window of opportunity to secure a liveable and sustainable future for all…The choices and actions implemented in this decade will have impacts now and for thousands of years.”

The report shows that many options for tackling climate change – from wind and solar power to tackling food waste and greening cities – are already cost effective, enjoy public support and would come with co-benefits for human health and nature.

At a press briefing, leading climate scientist and IPCC author Prof Friederike Otto said the report highlights “not only the urgency of the problem and the gravity of it, but also lots of reasons for hope – because we still have the time to act and we have everything we need”.

Carbon Brief’s team of journalists has delved through each page of the IPCC’s AR6 full synthesis report to produce a digestible summary of the key findings and graphics. 

1. What is this report? 

The synthesis report is the final part of the IPCC’s sixth assessment cycle. It “integrates” the main findings of the three working group reports, which have been published over the last 18 months or so:

The synthesis also takes into account the three shorter “special reports” that the IPCC has published during the sixth assessment cycle:

As the “mandate” was to produce a synthesis of existing material, “there is nothing that is in there that is not in the underlying reports”, author Prof Fredi Otto â€“ a senior lecturer at the Grantham Institute for Climate Change and the Environment at Imperial College London â€“ told a press briefing. This means that the report does not include any research or emissions pledges issued after the cut-off date for the WG3 assessment – which was 11 October 2021, several weeks before the COP26 climate summit in Glasgow.

The synthesis report is much shorter than the full assessment reports. The combined length of the “summary for policymakers” (SPM) – a short, non-technical synopsis – and the underlying report clocks in at 122 pages. This is longer than the 42.5 pages that were planned (pdf), but a fraction of the assessment reports that can top 3,000 pages. As with the assessment reports, the synthesis report has been through several rounds of review by experts and governments.

The report’s SPM was signed off via a line-by-line approval session involving authors and government delegates last week in Switzerland.

However, unlike the assessment reports, the session also approved the underlying full report “section by section”. It was also the IPCC’s first approval session since the Covid-19 pandemic that was held in person.

The approval process was scheduled to be completed on Friday 17 March, but overran – despite multiple “night sessions” and “round-the-clock deliberations”. The SPM was finally approved on the morning of Sunday 19 March in a “sparsely attended room”, as many developing country delegates had already left the venue, Third World Network reported. “People who have to contribute have left the meeting,” said India’s representatives in the early hours before the closing plenary.  

 Once the SPM was approved, there was then a “huge moment of panic” around whether “it would at all be possible to do the approval of the long report”, Otto said:

“We all almost died of adrenaline poisoning during [Sunday], but then it was approved quite straightforwardly.”

(The Earth Negotiations Bulletin has published a summary of the discussions during the approval session. This is referenced frequently in this article.)

The synthesis report shares the IPCC’s “calibrated language” that the assessment reports use to communicate levels of certainty behind the statements it includes. 

The findings are given “as statements of fact or associated with an assessed level of confidence”, based on scientific understanding. The language indicates the “underlying evidence and agreement”, the report explains:

“A level of confidence is expressed using five qualifiers: very low, low, medium, high and very high, and typeset in italics, for example, medium confidence

“The following terms have been used to indicate the assessed likelihood of an outcome or result: virtually certain 99-100% probability; very likely 90-100%; likely 66-100%; more likely than not >50-100%; about as likely as not 33-66%; unlikely 0-33%; very unlikely 0—10%; and exceptionally unlikely 0-1%. Additional terms (extremely likely 95-100%; more likely than not >50-100%; and extremely unlikely 0-5%) are also used when appropriate.”

The synthesis includes projections based on the latest generation of global climate models, produced as part of the sixth Coupled Model Intercomparison Project (CMIP6) for the AR6 cycle. However, it also brings together different approaches for how future pathways were considered in the assessment reports.

The WG1 report “assessed the climate response to five illustrative scenarios based on Shared Socioeconomic Pathways (SSPs) that cover the range of possible future development of anthropogenic drivers of climate change found in the literature”, the synthesis explains:

“The high and very high GHG emissions scenarios (SSP3-7.0 and SSP5-8.5) have CO2 emissions that roughly double from current levels by 2100 and 2050, respectively. The intermediate GHG emissions scenario (SSP2-4.5) has CO2 emissions remaining around current levels until the middle of the century. The very low and low GHG emissions scenarios (SSP1-1.9 and SSP1-2.6) have CO2 emissions declining to net-zero around 2050 and 2070, respectively, followed by varying levels of net-negative CO2 emissions.”

In contrast, the WG3 report assessed “a large number of global modelled emissions pathways…of which 1,202 pathways were categorised based on their projected global warming over the 21st century, with categories ranging from pathways that limit warming to 1.5C with more than 50% likelihood with no or limited overshoot (C1) to pathways that exceed 4C (C8)”.

The table below, taken from the synthesis report, shows how these pathways relate to the SSPs and their predecessors, the Representative Concentration Pathways (RCPs).

Description and relationship of scenarios and modelled pathways considered across AR6 working group reports. Source: IPCC (2023) Box SPM.1, Table 1

The synthesis report is the final product of the IPCC’s sixth assessment cycle. Its delay from the planned publication in September last year for “management reasons” – and the lack of transparency surrounding these issues – resulted in “unusually blunt statements of discontent from governments” about the IPCC’s impact and credibility, the Earth Negotiations Bulletin reported at the time. 

Nonetheless, governments agreed at a September meeting that the IPCC’s seventh assessment cycle (AR7) will begin in July this year and will have a length of between five and seven years. The end of AR6 and the start of AR7 will see the election of a new IPCC leadership team – including chair, vice-chairs and working group co-chairs. The first full assessment reports of AR7 would likely not be expected until 2027 or 2028.

The SPM says with high confidence that human activities have “unequivocally caused global warming”.

2. How is the Earth’s climate changing?

This statement – first made in the IPCC’s WG1 report â€“ is the strongest wording to date about the role of human activities on observed warming from any IPCC assessment cycle. 

Overall, the report says that global surface temperature in 2011-20 averaged at 1.09C above 1850-1900 levels – with a 1.59C rise seen over land and a 0.88C rise over the ocean. It adds, with high confidence, that “global surface temperature has increased faster since 1970 than in any other 50-year period over at least the last 2000 years”.

According to the Earth Negotiations Bulletin, delegates “disagreed on how much information to include” in the SPM sub-paragraph on global surface temperature increases. The bulletin outlines the lengthy discussion needed to finalise this section of the text – including decisions on whether to use the “more precise” 1.09C or the rounded 1.1C figure and warnings that the addition of extra sentences “overloaded the sub-paragraph with numbers and diluted the message”.

The SPM also discusses the observed changes and impacts of climate change to date. It makes the following statement with high confidence:

“Widespread and rapid changes in the atmosphere, ocean, cryosphere and biosphere have occurred. Human-caused climate change is already affecting many weather and climate extremes in every region across the globe. This has led to widespread adverse impacts and related losses and damages to nature and people.”

It says that global average sea levels increased by 0.2 metres between 1901 and 2018. Sea level rise accelerated over this time, from a rate of 1.3mm per year over 1901-71 to 2.7mm per year over 2006-18, it adds.

The SPM for the AR6 synthesis report is longer than its AR5 counterpart (pdf) and contains more numbers in its section on observed changes in the climate system.

For example, the AR5 report does not quantify the rate of acceleration of sea level rise, instead saying that “the rate of sea level rise since the mid-19th century has been larger than the mean rate during the previous two millennia (high confidence)”.

Meanwhile, the SPM says human influence has likely increased the chance of “compound” extreme events since the 1950s, including increases in the frequency of concurrent heatwaves and droughts.

The SPM has very high confidence that “increases in extreme heat events have resulted in human mortality and morbidity” in all regions. It adds that extreme temperatures also cause mental health challenges, trauma and the loss of livelihoods and culture. The report also has high confidence that climate change is “contributing to humanitarian crises where climate hazards interact with high vulnerability”.

India in 2022 faced a prolonged heatwave, with temperatures exceeding 42°C in numerous cities across the country. This came just weeks after India recorded its hottest March since the country’s meteorological department began its records over 120 years ago. This image, produced using data from the Copernicus Sentinel-3 mission, shows the land surface temperature across most of the nation. According to the India Meteorological Department, maximum air temperatures reached 43-46°C over most parts of Rajasthan, Vidarbha, Madhya Pradesh and East Uttar Pradesh; in many parts over Gujarat, interior Odisha; and in some parts of Madhya Maharashtra on 28 April. Forecasters warned that heatwave conditions are expected to continue until 2 May. Experts at the Indian Institute of Technology’s Water and Climate Lab stated that, in recent years, the number of Indian states hit by heatwaves has increased, as extreme temperatures become more frequent. Owing to the absence of cloud cover on 29 April (10:30 local time), the Sentinel-3 mission was able to obtain an accurate measurement of the land surface temperature of the ground, which exceeded 60°C in several areas. The data shows that surface temperature in Jaipur and Ahmedabad reached 47°C, while the hottest temperatures recorded are southeast and southwest of Ahmedabad (visible in deep red) with maximum land surface temperatures of around 65°C. The map was generated by using the mission’s Sea and Land Surface Temperature Radiometer instrument. While weather forecasts use predicted air temperatures, this satellite instrument measures the real amount of energy radiating from Earth. Therefore, the map shows the actual temperature of the land’s surface pictured here, which is usually significantly hotter than air temperatures. Sentinel-3 can monitor wildfires, map the way the land is used, provide indices of vegetation state, as well as measure the temperature, colour and height of the sea surface. For more information on the Copernicus Sentinel-3 mission, click here. By Contains modified Copernicus Sentinel data 2022, Attribution, https://commons.wikimedia.org/w/index.php?curid=117497147

Elsewhere, the report has high confidence that animal and human diseases including zoonoses â€“ infections that pass between animals and people – “are emerging in new areas” and very high confidence that “the occurrence of climate-related food-borne and water-borne diseases has increased”.

The SPM warns that climate and weather extremes are “increasingly driving displacement in Africa, Asia, North America (high confidence), and Central and South America (medium confidence), with small island states in the Caribbean and South Pacific being disproportionately affected relative to their small population size (high confidence)”.

The authors write that hot extremes have intensified in cities and that they have high confidence that the observed adverse impacts are “concentrated amongst economically and socially marginalised urban residents”.

The report elaborates, saying it has high confidence that “urban infrastructure including transportation, water, sanitation and energy systems have been compromised by extreme and slow-onset events, with resulting economic losses, disruptions of services and impacts to well-being”.

The table below shows observed changes in the climate and their attribution to human influence. Darker colours indicate a higher confidence in the changes and their human influence. Notably, the table lists “warming of the global climate system since pre-industrial times” as a “fact”.

Observed changes in the climate and their attribution to human influence. Darker colours indicate a higher confidence in the findings. Source: IPCC (2023) Table 2.1

The report has high confidence that climate change has hindered efforts to meet the Sustainable Development Goals by reducing food security, changing rainfall patterns, melting bodies of ice such as glaciers and driving more intense and frequent extreme weather events.

For example, the report says that “increasing weather and climate extreme events have exposed millions of people to acute food insecurity and reduced water security”. (For more on how climate change is affecting extreme weather, see Carbon Brief’s coverage of the IPCC’s WG1 report.)

The report also says that “substantial damages, and increasingly irreversible losses” have already been sustained. For example, it has very high confidence that approximately half of the species assessed globally have shifted polewards or to higher elevations. It has medium confidence that impacts on some ecosystems are “approaching irreversibility” – for example the impacts of hydrological changes resulting from glacial retreat.

The report also has high confidence that “economic impacts attributable to climate change are increasingly affecting peoples’ livelihoods and are causing economic and societal impacts across national boundaries”. 

3. How are human-caused emissions driving global warming?

The report states as fact – that is, with no calibrated language – that “human activities, principally through emissions of greenhouse gases, have unequivocally caused global warming”. 

In other words, the report states, “human-caused climate change is a consequence of more than a century of net GHG emissions from energy use, land-use and land use change, lifestyle and patterns of consumption, and production”.

Specifically, the report explains that humans have contributed to 1.07C of the observed warming between 1850-1900 and 2010-19, with a likely range of 0.8-1.3C. As the total observed warming over the same period is 1.06C, this means that humans have caused 100% of the long-term global warming to date.

This conclusion is in line with the synthesis report (pdf) of the IPCC’s fifth assessment report (AR5), published in 2014, which said:

“The best estimate of the human-induced contribution to warming is similar to the observed warming over [1951-2010].“

That the influence of human activity is marginally larger than the observed temperature rise reflects the mix of impacts that an industrialised society is having. The warming impact of the GHGs that human activity has produced is likely to be in the range of 1.0-2.0C. But then there is also the cooling influence of other “human drivers (principally aerosols)”, the report notes. 

Aerosols include tiny particles – such as soot – that are produced from cars, factories and power stations. They tend to have an overall cooling effect on the Earth’s climate by scattering incoming sunlight and stimulating clouds to form. These human drivers could have contributed to a cooling of 0.0-0.8C, the IPCC says. 

The net cooling effect of human-caused aerosols “peaked in the late 20th century”, the report notes with high confidence.

Natural influences on the climate had only a small influence on the long-term trend in global temperature, the reports says, with fluctuations in the sun and volcanic activity causing between -0.1C and 0.1C of temperature change and other natural variability causing between -0.2C and 0.2C.

The increase in concentrations of GHGs in the atmosphere since around 1750 “are unequivocally caused by GHG emissions from human activities over this period”, the IPCC says:

“In 2019, atmospheric CO2 concentrations (410 parts per million) were higher than at any time in at least 2m years (high confidence), and concentrations of methane (1866 parts per billion) and nitrous oxide (332 parts per billion) were higher than at any time in at least 800,000 years (very high confidence).”

The figure below shows “the causal chain from emissions to resulting warming of the climate system”. The bottom panel shows the increase in GHGs over 1850-2019, the middle panel shows the resulting rise in atmospheric greenhouse gas emissions, the top left panel shows the change in global surface temperature since 1850 and the top right panel separates the warming out into its different contributing factors.

The causal chain from emissions to resulting warming of the climate system. Panel (a) shows the increase in GHGs over 1850-2019. Panel (b) shows the resulting rise in atmospheric greenhouse gas emissions. Panel (c) shows the change in global surface temperature since 1850. Panel (d) separates the warming out into its different contributing factors. Source: IPCC (2023) Figure 2.1

The report says with high confidence that “land and ocean sinks have taken up a near-constant proportion (globally about 56% per year) of CO2 emissions from human activities over the past six decades”. However, looking to the future, it adds: 

“In scenarios with increasing CO2 emissions, the land and ocean carbon sinks are projected to be less effective at slowing the accumulation of CO2 in the atmosphere (high confidence). 

“While natural land and ocean carbon sinks are projected to take up, in absolute terms, a progressively larger amount of CO2 under higher compared to lower CO2 emissions scenarios, they become less effective, that is, the proportion of emissions taken up by land and ocean decreases with increasing cumulative net CO2 emissions (high confidence).”

In 2019, global net emissions of GHGs clocked in at 59bn tonnes of CO2 equivalent (GtCO2e), the report says. This is 12% higher than in 2010 and 54% higher than in 1990, with “the largest share and growth in gross GHG emissions occurring in CO2 from fossil fuels combustion and industrial processes followed by methane”. 

The report says, with high confidence, that GHG emissions since 2010 have increased “across all major sectors”. It continues:

“In 2019, approximately 34% (20GtCO2e) of net global GHG emissions came from the energy sector, 24% (14GtCO2e) from industry, 22% (13GtCO2e) from AFOLU, 15% (8.7GtCO2e) from transport and 6% (3.3GtCO2e) from buildings.”

However, although average annual GHG emissions between 2010 and 2019 were “higher than in any previous decade”, the rate of growth during this period (1.3% per year) “was lower than that between 2000 and 2009” (2.1% per year), the report notes. This sentence – which also featured in the WG3 report â€“ was added during the approval session at the request of China, the Earth Negotiations Bulletin reported.

Historical contributions to global GHGs “vary substantially across regions” and “continue to differ widely”, the authors note. 

In 2019, around 35% of the global population were in countries emitting more than nine tonnes of CO2e per capita – excluding CO2 emissions from land use, land-use change and forestry (LULUCF), the report says.

In contrast, 41% were in countries emitting less than three tonnes of CO2e. It adds that least developed countries (LDCs) and small island developing states (SIDS), in particular, have much lower per-capita emissions (1.7 and 4.6 tonnes of CO2e, respectively) than the global average (6.9 tonnes), excluding CO2 from LULUCF.

Perhaps most starkly, the authors note with high confidence:

“The 10% of households with the highest per-capita emissions contribute 34-45% of global consumption-based household GHG emissions, while the bottom 50% contribute 13-15%.”

The regional variations in emissions are illustrated by the figure below, which shows historical contributions (top-left), per capita emissions in 2019 (top-right) and global emissions since 1990 broken down by emissions (bottom). (For more on historical responsibility for emissions, see Carbon Brief’s analysis from 2021.)

During the approval session, France – supported by around 15 other countries, including the US and Canada – requested that this figure was elevated into the SPM “to provide a clear and necessary narrative about the causes of warming”, the Earth Negotiations Bulletin reported. However, Saudi Arabia, India and China opposed the move and a subsequent huddle was “unable to reach consensus”.

Regional contribution to global GHG emissions. Panel (a) shows the share of historical cumulative net anthropogenic CO2 emissions per region from 1850 to 2019 in GtCO2. Panel (b) shows the distribution of regional per-capita GHG emissions in tonnes CO2e by region in 2019. Both (a) and (b) are separated out by emissions category. Panel (c) shows global net human-caused GHG emissions by region (in GtCO2e per year) for 1990-2019. Percentage values refer to the contribution of each region to total GHG emissions in each respective time period. (The single-year peak of emissions in 1997 was due to a forest and peat fire event in south-east Asia.) Source: IPCC (2023) Figure 2.2

4. How much hotter will the world get this century?

The world will continue to get hotter “in the near term (2021-40)”, the report says, “in nearly all considered scenarios and pathways” for greenhouse gas emissions.

Crucially, however, there is a choice over how hot it gets by the end of the century. As the synthesis report explains: “Future warming will be driven by future emissions.”

The amount of warming this century largely depends on the amount of greenhouse gases that humans release into the atmosphere in the future “with cumulative net CO2 dominating”.

In order to stop global warming, the report says, CO2 emissions are, therefore, “require[d]” to reach net-zero. (See: What is needed to stop climate change?)

The report looks at a range of plausible futures, known as the shared socioeconomic pathways (SSPs), spanning very low to very high emissions. (See: What is this report?)

If emissions are very low (SSP1-1.9), then warming is expected to temporarily “overshoot” 1.5C by “no more than 0.1C” before returning to 1.4C in 2100, the report says.

If emissions are very high (SSP5-8.5), warming could reach 4.4C in 2100. (See below for more on what it would take for the world to follow these different emissions pathways.)

Notably, there is less uncertainty in these projections than there was in AR5. This is because the IPCC has narrowed the range of “climate sensitivity”, using observations of recorded warming to date and improved understanding of clouds.

The alternative emissions futures are shown in the figure below, which illustrates the 1.1C of warming to date and potential increases to 2100 in the style of the famous “climate stripes”.

The figure also illustrates the warming that would take place during the lifetimes of three representative generations born in 1950, 1980 and 2020.

Observed (1900-2020) and projected (2021-2100) warming relative to pre-industrial temperatures (1850-1900). Projections relate to very low emissions (SSP1-1.9), low emissions (SSP1-2.6), intermediate emissions (SSP2-4.5), high emissions (SSP3-7.0) and very high emissions (SSP5-8.5). Temperatures are colour-coded from the pre-industrial average (blue-grey) through to current warming of 1.1C (orange) and potentially more than 4C by 2100 (purple). Source: IPCC (2023) Figure SPM.1

While limiting warming in line with global targets would require “deep and rapid, and, in most cases, immediate greenhouse gas emissions reductions in all sectors this decade”, these efforts would not be felt for some time. The SPM explains with high confidence:

“Continued greenhouse gas emissions will lead to increasing warming…Deep, rapid and sustained reductions in greenhouse gas emissions would lead to a discernible slowdown in global warming within around two decades.”

This delay means that global temperatures are more likely than not to reach 1.5C during 2021-40, the report says, even if emissions are very low.

The report does not give specific “exceedance” years that breach 1.5C for each emissions pathway. (The 1.5C limit of the Paris Agreement relates to long-term averages, rather than warming in a single year.)

The SPM explains that for very low, low, intermediate and high emissions, “the midpoint of the first 20-year running average period during which [warming] reaches 1.5C lies in the first half of the 2030s”. If emissions are very high, it would be in “the late 2020s”.

Similarly, the report says warming will exceed 2C this century “unless deep reductions in CO2 and other GHG emissions occur in the coming decades”.

At the other end of the spectrum, it has “become less likely” that the world will match the very high emissions scenario (SSP5-8.5), where warming exceeds 4C this century.

The report says, with medium confidence, that emissions could only reach such high levels if there is “a reversal of current technology and/or mitigation policy trends”.

However, it says 4C of warming is possible with lower emissions, if carbon cycle feedbacks or climate sensitivity are larger than thought. It explains in a footnote to the SPM:

“Very high emissions scenarios have become less likely, but cannot be ruled out. Warming levels >4C may result from very high emissions scenarios, but can also occur from lower emission scenarios if climate sensitivity or carbon cycle feedbacks are higher than the best estimate.”

In addition to the path of greenhouse gas emissions, changing emissions of “short-lived climate forcers” (SLCFs) can also add to near- and long-term warming, the report says with high confidence. SLCFs include methane, aerosols and ozone precursors, it explains.

There have been concerns that efforts to cut greenhouse gas emissions could also reduce output of cooling aerosols, “unmasking” additional warming. The report plays down this risk:

“Simultaneous stringent climate change mitigation and air pollution control policies limit this additional warming and lead to strong benefits for air quality (high confidence).”

5. What are the potential impacts at different warming levels?

With every extra bit of global warming, extremes facing the world will become larger, the report says.

The Water Cycle. Credit: USGS

For example, it says with high confidence that continued climate change will further intensify the global water cycle, driving changes to monsoons and to very wet and very dry weather.

As temperatures rise, natural land and ocean carbon sinks will be less able to absorb emissions – worsening warming further, the report says with high confidence.

Other changes to expect include further reductions in “almost all” the world’s ice systems, from glaciers to sea ice (high confidence), further global sea level rise (virtually certain), and increasing acidity and decreasing oxygen availability in the oceans (virtually certain).

Every world region will experience more climate impacts with every bit of further warming, the report says. 

Compound heatwave and drought extremes are expected to become more frequent in many regions, the report says with high confidence. 

Nuisance flooding.

Extreme sea level events that currently occur once in every 100 years are expected to take place at least annually in more than half all measurable locations by 2100, under any future emissions scenario, it says with high confidence. (Extreme sea level events include storm surges and flooding.)

Other projected changes include the intensification of tropical storms (medium confidence) and increases in fire weather (high confidence), according to the report.

It says that the natural variability of the Earth’s climate will continue to act alongside climate change, sometimes worsening and sometimes masking its effects.

The graphic below, from the report’s SPM, illustrates some of the regional impacts of climate change at 1.5C, 2C, 3C and 4C of global warming. (Current policies from governments have the world on track for around 2.7C of warming.)

A selection of regional climate impacts at 1.5C, 2C, 3C and 4C of global warming. [The world is currently on track for 2.7C]. Source: IPCC (2023) Figure SPM.2

In the near term, every world region is expected to face further increases in climate hazards – with rising risk for humans and ecosystems (very high confidence), the report says.

Risks expected to increase in the near-term include heat-related deaths (high confidence), food-, water- and vector-borne diseases (high confidence), poor mental health (very high confidence), flooding in coastal and low-lying cities (high confidence) and a decrease in food production in some regions (high confidence).

At 1.5C, risks will increase for “health, livelihoods, food security, water supply, human security and economic growth”, the report says. At this level of global warming, many low-elevation and small glaciers around the world would lose most of their mass or disappear, the report says with high confidence. Coral reefs are expected to decline by a further 70–90%, it adds with high confidence.

At 2C, risks associated with extreme weather events will transition to “very high”, the report says with medium confidence. At this level of warming, changes in food availability and diet quality could increase nutrition-related diseases and undernourishment for up to “hundreds of millions of people”, particularly among low-income households in sub-Saharan Africa, south Asia and central America, the report says with high confidence.

At 3C, “risks in many sectors and regions reach high or very high levels, implying widespread systemic impacts”, the report says. The number of endemic species in biodiversity hotspots at a very high risk of extinction is expected to be 10 times higher than at 1.5C, it says with medium confidence.

At 4C and above, around half of tropical marine species could face local extinction, the report says with medium confidence. Around four billion people could face water scarcity, it says with medium confidence. It adds that the global area burned by wildfires could increase by 50-70% (medium confidence).

The graphic below, from the report’s SPM, illustrates the risks facing Earth’s species (a) and human health risk from extreme heat-humidity (b) under different levels of global warming. 

It shows that, at temperatures above 2C, some regions will see all of their wildlife exposed to dangerous temperatures, assuming the species do not relocate to somewhere else. 

It also shows that, above 2C, some people will live in regions where temperature and humidity conditions are deadly every day of the year. 

Risks to species and humans at various levels of global warming. Source: IPCC (2023) SPM.3a and b

The risks identified in this report are larger at lower levels at warming, when compared to the IPCC’s last assessment in 2014.

This is because of new evidence from climate extremes already recorded, improved scientific understanding, new knowledge on how some humans and species are more vulnerable than others and a better grasp of the limits to adaptation, the report says with high confidence.

Because of “unavoidable” sea level rise, risks for coastal ecosystems, people and infrastructure will continue to increase beyond 2100, it adds with high confidence.

As climate change worsens, risks “will become increasingly complex and more difficult to manage”, the report says.

Climate change is likely to compound other societal issues, it says. For example, food shortages driven by warming are projected to interact with other factors, such as conflicts, pandemics and competition over land, the report says with high confidence.

Most pathways for how the world can meet its ambitious 1.5C temperature involve a period of “overshoot” where temperatures exceed this level of warming temporarily before dropping back down.

During this period of overshoot, the world would see “adverse impacts” that may worsen climate change, such as increased wildfires, mass mortality of ecosystems and permafrost thawing, the report says with medium confidence.

The report adds that solar geoengineering â€“ methods for reflecting away sunlight to reduce temperature rise – has the “potential to offset warming within one or two decades and ameliorate some climate hazards”, but could also “introduce a widespread range of new risks to people and ecosystems” and “would not restore climate to a previous state”.

6. What are the risks of abrupt and irreversible change?

The report warns that continued emissions of GHGs will “further affect all major climate system components and many changes will be irreversible on centennial to millennial timescales”.

While “many changes in the climate system” will become larger “in direct relation to increasing global warming”, the likelihood of “abrupt and/or irreversible outcomes increases with higher global warming levels”, the report says with high confidence. For example, it says:

“As warming levels increase, so do the risks of species extinction or irreversible loss of biodiversity in ecosystems such as forests (medium confidence), coral reefs (very high confidence) and in Arctic regions (high confidence).”

The impacts of warming on some ecosystems are already “approaching irreversibility”, the report says, “such as the impacts of hydrological changes resulting from the retreat of glaciers, or the changes in some mountain (medium confidence) and Arctic ecosystems driven by permafrost thaw (high confidence)”.

Abrupt and irreversible changes can include those “triggered when tipping points are reached”, the report says:

“Risks associated with large-scale singular events or tipping points, such as ice sheet instability or ecosystem loss from tropical forests, transition to high risk between 1.5C-2.5C (medium confidence) and to very high risk between 2.5C-4C (low confidence).”

(See Carbon Brief’s explainer for more on tipping points.) 

The report has high confidence that “the probability of low-likelihood outcomes associated with potentially very large impacts increases with higher global warming levels”. The impact of these abrupt changes would be dramatic.

Citing an example of the Atlantic Meridional Overturning Circulation (AMOC), a major system of currents in the Atlantic Ocean that brings warm water up to Europe from the tropics and beyond, the report says:

“[AMOC] is very likely to weaken over the 21st century for all considered scenarios (high confidence), however an abrupt collapse is not expected before 2100 (medium confidence). If such a low probability event were to occur, it would very likely cause abrupt shifts in regional weather patterns and water cycle, such as a southward shift in the tropical rain belt, and large impacts on ecosystems and human activities.”

For comparison, the AR5 synthesis report also concluded that a weakening of AMOC was very likely, but said that an abrupt transition or collapse in the 21st century was very unlikely.

The report notes that “low-likelihood, high-impact outcomes could occur at regional scales even for global warming within the very likely assessed range for a given GHG emissions scenario”. 

The report has a particularly stark assessment on the projected impacts of global warming on the ocean. The authors warn, with high confidence, that sea level rise is “unavoidable for centuries to millennia due to continuing deep ocean warming and ice sheet melt”. And levels will “remain elevated for thousands of years”.

While the authors are virtually certain that sea level rise will continue through this century, “the magnitude, the rate, the timing of threshold exceedances, and the long-term commitment of sea level rise depend on emissions, with higher emissions leading to greater and faster rates of sea level rise”.

Over the next 2,000 years, global average sea level “will rise by about 2-3 metres if warming is limited to 1.5C and 2-6 m if limited to 2C”, the report says, with low confidence.

Warming beyond 2C could put the Earth’s massive ice sheets at risk, the report says:

“At sustained warming levels between 2C and 3C, the Greenland and West Antarctic ice sheets will be lost almost completely and irreversibly over multiple millennia (limited evidence).”

These projections of sea level rise across thousands of years are “consistent with reconstructed levels during past warm climate periods”, the report notes.

For example, it says with medium confidence, “global mean sea level was very likely 5-25 metres higher than today roughly 3m years ago, when global temperatures were 2.5-4C higher than 1850-1900”.

In addition to rising sea levels, the authors say it is virtually certain that ocean acidification â€“ where seawater becomes less alkaline – will continue throughout this century. And they have high confidence that deoxygenation â€“ the decline in oxygen levels in the ocean – will too.

The report also cautions that the amount of warming – and the impact it would have – could be more severe than projected.

For example, it says, “warming substantially above the assessed very likely range for a given scenario cannot be ruled out, and there is high confidence this would lead to regional changes greater than assessed in many aspects of the climate system”.

On sea levels, the authors add:

“Global mean sea level rise above the likely range – approaching two metres by 2100 and in excess of 15 metres by 2300 under a very high GHG emissions scenario (SSP5-8.5) (low confidence) – cannot be ruled out due to deep uncertainty in ice-sheet processes and would have severe impacts on populations in low elevation coastal zones.”

7. What does the report say on loss and damage?

For the first time ever, the term “loss and damage” is mentioned in an IPCC synthesis report. This reflects its prominence in the 1.5C special report and WG2 report during the sixth assessment cycle.

The report explains the formal recognition of loss and damage via the Warsaw Mechanism on Loss and Damage and the Paris Agreement. 

It acknowledges that there has been an “improved understanding” of what constitutes economic and non-economic losses and damages. In turn, this has served to inform climate policy as well as highlight governance, financial and institutional gaps in how it is being addressed. 

The AR6 synthesis report mentions the formal recognition of “loss and damage”. Source: IPCC (2023) Full report p18

After this single mention, the report discusses “losses and damages” more broadly. These, it defines in a footnote in the SPM, are the “adverse observed impacts and/or projected risks and can be economic and/or non-economic”.

Including loss and damage in the IPCC’s assessments has been a fraught process. The use of two separate terms separates the scientific “losses and damages” from the political debate of “loss and damage” under the UNFCCC, even as impacted countries hope to connect the two.

In the plenary discussions, Grenada – supported by ​​Senegal, Antigua and Barbuda, Timor Leste, Kenya and Tanzania – wanted vulnerable countries to be referenced and the differences between the two terms explicitly clarified, given that “the distinction is often confusing to people outside of the IPCC”. The US, meanwhile, supported putting a definition in the footnote. 

On the impacts of climate change, the report recognises and reviews “strengthened” evidence of heatwaves, extreme rainfall, droughts and tropical cyclones, plus their attribution to human influence, since the last synthesis report.

In all regions, extreme heat events have resulted in human mortality and morbidity, it says with very high confidence, while climate-related food-borne and water-borne diseases have increased. Climate change is also contributing to humanitarian crises “where climate hazards interact with high vulnerability”, the report states with high confidence. 

Climate change has caused “substantial damages, and increasingly irreversible losses” in land-based, freshwater, coastal, ocean and open ecosystems, as well as in glaciers and continental ice sheets, the report’s summary says with high confidence.

The A2 headline statement from the SPM that authors “spent hours crafting” to reflect vulnerability and impacts on human and natural systems. IPCC (2023) SPM p5

The widespread “losses and damages to nature and people” are unequally distributed across systems, regions and sectors”, says the report’s summary, pointing to both economic and non-economic losses. 

Sectors such as agriculture, forestry, fishery, energy, and tourism that are “climate exposed” have experienced economic damages from climate change, the report states with high confidence. 

Across the world, non-economic loss and damage impacts, such as mental health challenges, were associated with trauma from extreme weather events and loss of livelihoods and culture. (According to the Earth Negotiations Bulletin, India requested that mental health not be included in these impacts, which Finland opposed.)

The report says with high confidence that “vulnerable communities who have historically contributed the least to current climate change are disproportionately affected”.

For example, fatalities from floods, droughts and storms were 15 times higher in highly vulnerable regions between 2010 to 2020, compared to regions with very low vulnerability, it states with high confidence.

In urban areas, losses and damages are “concentrated” in communities of economically and socially marginalised residents, the report notes.

The figure below shows observed impacts on human systems and ecosystems attributed to climate change at global and regional levels, along with confidence in their attribution to climate change.

Observed and widespread impacts and related losses and damages attributed to climate change. Mental health and displacement impacts are limited to only regions assessed. Confidence levels reflect attribution studies so far. Source: IPCC (2023), Figure SPM1a

The report states with very high confidence that “losses and damages escalate with every increment of global warming”.

These will be higher at 1.5C and even higher at 2C, the report’s summary states. Compared to AR5, “global aggregated risk levels” will be high to very high even at lower warming levels, owing to an improved understanding of exposure, vulnerability and recent evidence, including “limits to adaptation”. Climatic and non-climatic risks will increasingly interact, leading to “compound and cascading risks” that are difficult to manage.

However, near-term climate actions that rein in global warming to “close to 1.5C” could “substantially reduce” losses and damages to humans and ecosystems. Still, even these actions “cannot eliminate them all”, the report notes.

Overall, the magnitude and rate of future losses and damages “depend strongly” on near-term mitigation and adaptation actions, the report says with very high confidence

Without both, “losses and damages will continue to disproportionately affect the poorest and most vulnerable”, the report says, adding that “accelerated financial support for developing countries from developed countries and other sources is a critical enabler for mitigation action”. (See: Why is finance an ‘enabler’ and ‘barrier’ for climate action?)

Delaying mitigation will only increase warming, which could derail the effectiveness of adaptation options, it says with high confidence, leading to more climate risks and related losses and damages.

However, the report and its summary warn with high confidence that “adaptation does not prevent all losses and damages”. The authors point out with high confidence that some ecosystems, sectors and regions have already hit limits to how much they can adapt to climate impacts. In some cases, adaptive actions are unfeasible – that is, they have “hard limits” – for certain natural systems or are simply not an option because of socioeconomic or technological barriers – known as “soft limits” – leading to unavoidable loss and damage impacts. 

“One of the new messages in this report is that it effectively busts the myth of endless adaptation,” said report author Dr Aditi Mukherji, director at the Consultative Group on International Agricultural Research (CGIAR), speaking at a press conference.

8. Why is climate action currently ‘falling short’?

Current pledges for how countries will cut emissions by 2030 make it likely that global warming will exceed 1.5C this century and will make it harder to limit temperatures to 2C, according to one of the headline findings of the report.

The establishment of the Paris Agreement â€“ the landmark climate deal reached in 2015 – has led to more target-setting and “enhanced transparency” for climate action, the report says with medium confidence.

At the same time, there has been “rising public awareness” about climate change and an “increasing diversity” of people taking action. These efforts “have overall helped accelerate political commitment and global efforts to address climate change”, the report says, adding:

“In some instances, public discourses of media and organised counter movements have impeded climate action, exacerbating helplessness and disinformation and fuelling polarisation, with negative implications for climate action (medium confidence).”

It says with high confidence that many rules and economic tools for tackling emissions have been “deployed successfully” – leading to enhanced energy efficiency, less deforestation and more low-carbon technologies in many countries. This has in some cases lowered emissions.

By 2020, laws for reducing emissions were in place in 56 countries – covering 53% of global emissions, the report says.

At least 18 countries have seen their production and consumption emissions fall for at least 10 years, it adds. But these reductions have “only partly offset” global emissions increases.

The report adds that there are several options for tackling climate change that are “technically viable”, “increasingly cost effective” and are “generally supported by the public”. 

This includes solar and wind power, the greening of cities, boosting energy efficiency, protecting forests and grasslands, reducing food waste and increasing the electrification of urban systems.

It adds that, over 2010-19, there have been large decreases in the unit costs of solar power (85%), wind (55%) and lithium ion batteries (85%). In many regions, electricity from solar and wind is now cheaper than that derived from fossil fuels, the report says.

Solar installation in the San Luis Valley. Photo credit: Western Resource Advocates

(According to the Earth Negotiations Bulletin, a group of countries including Germany, Denmark and Norway strongly argued for the report to highlight that renewables are now cheaper than fossil fuels in many regions. Finland suggested adding that fossil fuels are the “root cause” of climate change, but this was strongly opposed by Saudi Arabia.)

At the same time, there have been “large increases in their deployment”, including a global average of 10 times for solar and 100 times for electric cars, the report says. 

Falling costs and increased deployment have been boosted by public research and funding and demand-side policies such as subsidies, it says, adding:

“Maintaining emission-intensive systems may, in some regions and sectors, be more expensive than transitioning to low-emission systems (high confidence).”

(According to the Earth Negotiations Bulletin, India, supported by Brazil, said the sentence “favoured developed countries as it did not reference feasibility and challenges”.)

Despite this, a “substantial emissions gap” remains between what global GHG emissions are projected to be in 2030 and what they must be if the world is to limit global warming to 1.5C or 2C, the report says with high confidence. (The 2030 projections are derived from country climate pledges made prior to COP26 in 2021.)

This gap would “make it likely that warming will exceed 1.5C during the 21st century”, the report says with high confidence.

Pathways for how the world can limit global warming to 1.5C or 2C depend on deep global emissions cuts this decade, it adds with high confidence.

The report says with medium confidence that country climate plans ahead of COP26 would lead to around 2.8C of warming (range from 2.1-3.4C) by 2100.

However, it adds with high confidence that policies put in place by countries by the end of 2020 would not be sufficient to achieve these climate plans. This represents an “implementation gap”.

When just policies put in place by the end of 2020 are considered, around 3.2C of warming (range 2.2-3.5C) is projected by 2100, the report says with medium confidence.

The chart below, from the SPM, illustrates the warming expected in 2100 from policies implemented by 2020 (red), as well as what emissions cuts would need to look like to reach 1.5C (blue) or 2C (green).

Expected warming in 2100 from policies implemented by the end of 2020 (red), compared with emissions cuts needed to limit warming to 1.5C (blue) or 2C (green). Source: IPCC (2023) SPM.5

Speaking during a press briefing, Prof Peter Thorne, director of the ICARUS Climate Research Centre at Maynooth University in Ireland and synthesis report author, noted that the IPCC’s assessment had a cut-off date of before COP26 in 2021. He explained:

“Additional implemented policies since the cut-off date would lead to those curves drawing down a little bit, compared to where they are. But everything that has happened since the IPCC cut-off – which is outside the scope of this synthesis report – would suggest that we’re still some way off.”

(A November 2022 assessment from the independent research group Climate Action Tracker found that country climate plans for 2030 in place by that time would cause 2.4C (range 1.9-2.9C) of warming. Policies in place by that time would cause 2.7C (range 2.2-3.4C), it added.)

The report also notes that many countries have signalled intentions to achieve net-zero greenhouse gas or CO2 emissions by 2050. However, it says such pledges differ “in terms of scope and specificity, and limited policies are to date in place to deliver on them”.

In most developing countries, the rollout of low-carbon technologies is lagging behind, the report adds. This is due in part to a lack of finance and technology transfer from developed countries, it says with medium confidence.

The leveraging of climate finance for developing countries has slowed since 2018, the report says with high confidence. It adds:

“Public and private finance flows for fossil fuels are still greater than those for climate adaptation and mitigation (high confidence).”

9. What is needed to stop climate change?

“There is a brief and rapidly closing window of opportunity to secure a liveable and sustainable future for all,” the report says with high confidence.

The synthesis delivers a blunt message on what will be needed to stop climate change, saying “limiting human-caused warming requires net-zero CO2 emissions”.

(The Earth Negotiations Bulletin says there was debate over this opening sentence in section B5 of the SPM. It reports: “The authors said that a fundamental insight of AR6 is that, to hold warming at any level, net-zero [CO2] emissions are required at some point.)

The report goes on to say, with high confidence, that reaching net-zero greenhouse gas emissions would imply net-negative CO2 – and would “result in a gradual decline in surface temperatures”.

Reaching net-zero emissions requires “rapid and deep and, in most cases, immediate greenhouse gas emissions reductions in all sectors this decade”, according to the report.

Repeating language from the underlying WG3 report, it adds that global GHG emissions must peak “between 2020 and at the latest before 2025” to keep warming below 1.5C or 2C.

In contrast with the direct wording on net-zero, the report barely mentions coal, oil and gas. 

A coal train moves in front of the Black Thunder mine outside Wright in October, 2016. (Andrew Graham/WyoFile)

However, it does say net-zero would mean a “substantial reduction in overall fossil fuel use”.

Staying below 1.5C or 2C depends on cumulative carbon emissions at the time of reaching net-zero CO2 and the level of greenhouse gas emissions cuts this decade, the report says.

Specifically, net-zero CO2 needs to be reached “in the early 2050s” to stay below 1.5C:

“Pathways that limit warming to 1.5C (>50%) with no or limited overshoot reach net-zero CO2 in the early 2050s, followed by net-negative CO2 emissions. Those pathways that reach net-zero GHG emissions do so around the 2070s. Pathways that limit warming to 2C (>67%) reach net-zero CO2 emissions in the early 2070s.”

(There was some confusion on this point after a speech by UN secretary-general AntĂłnio Guterres launching the IPCC report. Guterres called for global net-zero emissions by 2050, with developed countries going faster, but did not say if he was referring to CO2 or GHGs.)

There is a direct link between cumulative carbon emissions and warming, with the report saying that every 1,000GtCO2 raises temperatures by 0.45C. The report says with high confidence:

“From a physical science perspective, limiting human-caused global warming to a specific level requires limiting cumulative CO2 emissions, reaching at least net-zero CO2 emissions, along with strong reductions in other greenhouse gas emissions.”

This results in “carbon budgets” that must not be exceeded if the world is to limit warming to a given level. As of the start of 2020, the remaining budget to give a 50% chance of staying below 1.5C is 500GtCO2, rising to 1,150GtCO2 for a 67% chance of staying below 2C.

(Stronger reductions of non-CO2 emissions would mean a larger carbon budget for a given temperature limit, the report notes, and vice versa.)

Some four-fifths of the total budget for 1.5C has already been used up during 1850-2019 and the last fifth would be “almost exhaust[ed]” by 2030, if emissions remained at 2019 levels.

In order to stay within the budget for 1.5C, global greenhouse gas emissions would need to fall to 43% below 2019 levels by 2030 and to 60% below by 2035, falling 84% by 2050.

Even faster reductions are required for CO2 emissions, which would fall to 48% below 2019 levels by 2030, 65% by 2035 and 99% by 2050, when they would effectively hit net-zero.

The synthesis report lists these numbers in a new table, below. While the information is not new, it had not previously been presented in an accessible format. It was added during the week-long approval process and is labelled “Table XX”.

Central (median) CO2 and GHG reductions in 2030, 2035, 2040 and 2050, relative to 2019 levels, in 97 “C1” scenarios that have a greater than 50% chance of limiting warming to 1.5C with no or limited overshoot, and in 311 “C3” scenarios that have a 67% chance of limiting warming to 2C. Numbers in square brackets indicate 5th to 95th percentile ranges across the scenarios. Note that most of these scenarios are designed to cut emissions globally at “least-cost”, meaning they “do not make explicit assumptions about global equity, environmental justice or intraregional income distribution”. Source: IPCC (2023) Table XX.

At a briefing for journalists held by the UK Science Media Centre, Dr Chris Jones, synthesis report author and research fellow at the UK’s Met Office, said: “We hope, obviously, this information is useful for the stocktake process.”

(This refers to the “global stocktake” of progress to date and the efforts needed to meet international climate goals, which is taking place this year as part of the UN climate process.)

The report outlines how the world could reach net-zero CO2 emissions via a “substantial reduction in overall fossil fuel use, minimal use of unabated fossil fuels, and use of carbon capture and storage (CCS) in the remaining fossil fuel systems”.

(The phrase “unabated fossil fuels” is defined in a footnote to the report, by comparison with “abatement”, which it says would mean “capturing 90% or more CO2 from power plants, or 50–80% of fugitive methane emissions from energy supply”.)

While the world needs to make “deep and rapid” cuts in gross emissions, the use of CO2 removal (CDR) is also “unavoidable” to reach net-zero, the report says with high confidence.

The report explains:

“[P]athways reaching net-zero CO2 and GHG emissions include transitioning from fossil fuels without carbon capture and storage (CCS) to very low- or zero-carbon energy sources, such as renewables or fossil fuels with CCS, demand-side measures and improving efficiency, reducing non-CO2 GHG emissions, and CDR.”

CDR will be needed to “counterbalance” hard-to-abate residual emissions in some sectors, for example “some emissions from agriculture, aviation, shipping and industrial processes”.

(For more detail on sectoral transitions needed to reach net-zero, see: How can individual sectors scale up climate action?)

Emphasising the challenge of limiting warming, the report says the fossil fuel infrastructure that has already been built would be enough to breach the 1.5C carbon budget, if operated in line with historical patterns and in the absence of extra abatement.

This is shown in the figure below. The top panel shows historical emissions and the remaining budgets for 1.5C or 2C, as well as emissions this decade if they remain at 2019 levels and the emissions of existing and planned fossil fuel infrastructure.

The lower panel shows historical warming and potential increases by 2050, in relation to the carbon budgets and the range of possible emissions over the same period.

Cumulative past, projected and “committed” CO2 emissions from existing and planned fossil fuel infrastructure, GtCO2, and associated global warming. Source: IPCC (2023) Figure 3.5.

Delaying emissions cuts risks “lock-in [of] high-emissions infrastructure”, the report states, adding with high confidence that this would “raise risks of stranded assets and cost-escalation, reduce feasibility, and increase losses and damages”.

The report notes that only “a small number of the most ambitious global modelled pathways” avoid temporary overshoot of the 1.5C target. However, warming “could gradually be reduced again by achieving and sustaining net-negative global CO2 emissions”.

On the other hand, the IPCC warns of “additional risks” as a result of overshoot, defined as exceeding a warming level and returning below it later. It states with high confidence:

“Overshoot entails adverse impacts, some irreversible, and additional risks for human and natural systems, all growing with the magnitude and duration of overshoot.”

The report adds that some of these impacts could make it harder to return warming to lower levels, stating with medium confidence:

“Adverse impacts that occur during this period of overshoot and cause additional warming via feedback mechanisms, such as increased wildfires, mass mortality of trees, drying of peatlands, and permafrost thawing, weakening natural land carbon sinks and increasing releases of GHGs would make the return more challenging.”

It says the risks around overshoot, as well as the “feasibility and sustainability concerns” for CDR, can be minimised by faster action to cut emissions. Similarly, development pathways that use resources more efficiently also minimise dependence on CDR.

10. How can individual sectors scale up climate action?

In order to limit warming to 2C or below by the end of the century, all sectors must undergo “rapid and deep, and in most cases, immediate greenhouse gas emissions reductions”, the report says.

Limiting warming to 1.5C with “no or limited overshoot” requires achieving net-zero CO2 emissions in the early 2050s. To keep warming to 2C, net-zero CO2 must be achieved “around the early 2070s”. 

It continues, with medium confidence

Source: IPCC (2023) Full report, p68

Reducing emissions from the energy sector requires a combination of actions, the report says: a “substantial reduction” in the use of fossil fuels; increased deployment of energy sources with zero or low emissions, “such as renewables or fossil fuels with CO2 capture and storage” (CCS); improving energy efficiency and conservation; and “switching to alternative energy carriers”. 

For sectors that are harder to decarbonise, such as shipping, aviation, industrial processes and some agriculture-related emissions, the report notes that using carbon dioxide removal (CDR) technologies to counterbalance these residual emissions “is unavoidable”. 

Graphic credit: The Nature Conservancy

The language around CCS and CDR was some of the most contentious during the approval session. According to the Earth Negotiations Bulletin, Germany “suggested including a brief overview of the feasibility and current deployment of different CDR methods”, with France adding that policymakers must be made aware of the associated challenges.

But Saudi Arabia countered that if these barriers were made explicit in this section, it “would require similar balancing language on the feasibility of solar and renewables elsewhere in the report”. 

Similar discussions were had around CCS, with the authors ultimately agreeing to add a sub-paragraph in a footnote that details both the limits and benefits of CCS, at the urging of Germany and Saudi Arabia, respectively. 

The report discusses several technologies across a range of maturity, removal and storage potential and costs. It finds that “all assessed modelled pathways that limit warming to 2C (>67%) or lower by 2100” rely, at least in part, on mitigation from agriculture, forestry and other land use (AFOLU). Such approaches are currently “the only widely practised CDR methods”, the report notes.

However, it details trade-offs and barriers to large-scale implementation of AFOLU-based mitigation, including climate change impacts, competing demands for land use, endangering food security and violation of Indigenous rights. 

The report also discusses sector-specific actions that can be taken in order to limit emissions and climate impacts. These transformations, it says, are “required for high levels of human health and well-being, economic and social resilience, ecosystem health and planetary health”.

The chart below shows near-term feasibility of adaptation (left) and mitigation (right) options, divided across six sectors (top left to bottom right): energy supply; land, water and food; settlements and infrastructure; health; society, livelihood and economy; and industry and waste.

For adaptation options, the figure shows the potential for synergies with mitigation strategies and the feasibility of these options up to 1.5C of warming, from low (light purple) to high (dark blue). The dots in each box represent the confidence level, from low (one dot) to high (three dots).

On the right, mitigation options are presented with their potential contribution to emissions reductions by 2030, in GtCO2e per year. The colours indicate the cost of each option, from low (yellow) to high (red), with blue indicating options that are cheaper than fossil fuels. Some of the mitigation options with the highest potential for cost-saving are solar and wind power, efficient vehicles, lighting and other equipment, and public transit and cycling.

Feasibility of climate adaptation options and their synergies with mitigation actions (left) and potential contributions of mitigation options to emissions reductions by the end of the decade (right). Source: IPCC (2023) Figure 4.4a

Some of these mitigation options relate to changes in energy demand, rather than supply. This includes “changes in infrastructure use, end-use technology adoption and socio-cultural and behavioural change”, the report says, noting that such changes can reduce emissions in end-use sectors by 40-70% by mid-century.

The chart below shows the mid-century mitigation potential of demand-side changes across a range of sectors: food (including diet and waste), land transport, buildings, industry and electricity. The green arrows represent the mitigation potential in GtCO2 per year. 

The mitigation potential, in GtCO2e per year, of five demand-side sectors (top to bottom): food, land transport, buildings, industry and electricity. The grey bar shows the additional emissions that continued electrification will add. Source: IPCC (2023) Figure 4.4b

Section 4.5 of the report goes into detail about near-term mitigation and adaptation, in subsections covering energy systems; industry; cities, settlements and infrastructure; land, ocean, food and water; health and nutrition; and society, livelihoods and economies. At the urging of India (supported by Saudi Arabia and China) in the approval session, the report notes that the availability and feasibility of these options differs “across systems and regions”.

On energy systems, the report says with high confidence that “major energy system transitions” are required and with very high confidence that adaptation “can help reduce climate-related risks to the energy system”, including extreme events that can damage or otherwise affect energy infrastructure.

It notes that many of the options for large-scale emissions reductions are “technically viable and supported by the public”. It adds:

“Maintaining emission-intensive systems may, in some regions and sectors, be more expensive than transitioning to low emission systems.”

However, adaptation measures for certain types of power generation, such as hydropower, have “decreasing effectiveness at higher levels of warming” beyond 1.5C or 2C, the report notes. Reducing vulnerabilities in the energy sector requires diversification and changes on the demand side, including improving energy efficiency.

The strategies to reduce industrial emissions “differ by type of industry”, the report says. Light manufacturing can be “largely decarbonised” through available technologies and electrification, while decarbonising others will require the use of carbon capture and storage and the development of new technologies. The report adds that extreme events will cause “supply and operational disruptions” across many industries.

“Effective mitigation” strategies can be implemented at every step of building design, construction and use, the report says. It notes that demand-side measures can help reduce transportation-related emissions, as can re-allocating street space for pedestrians and cyclists and enabling telework. 

With high confidence, it says: 

“Key infrastructure systems including sanitation, water, health, transport, communications and energy will be increasingly vulnerable if design standards do not account for changing climate conditions.”

The report also says that “green” and “blue” infrastructure have myriad benefits: climate change mitigation, reducing extreme weather risk and improving human health and livelihoods.

AFOLU, as well as the ocean, offer “substantial mitigation and adaptation potential…that could be upscaled in the near term across most regions”, the report finds. It notes that conservation and restoration of ecosystems provide “the largest share” of this potential. It reads:

Source: IPCC (2023) Full report, p73

Such actions must be taken with the cooperation and involvement of local communities and Indigenous peoples, the report adds.

With very high confidence, the report states that “mainstream[ing]” health considerations into policies will benefit human health. There is also high confidence in the existing availability of “effective adaptation options” in the health sector, such as improving access to drinking water and vaccine development. The report states with high confidence:

“A key pathway to climate resilience in the health sector is universal access to healthcare.”

The report calls for improving climate education, writing with high confidence

“Climate literacy and information provided through climate services and community approaches, including those that are informed by Indigenous knowledge and local knowledge, can accelerate behavioural changes and planning.”

It says that many types of adaptation options “have broad applicability across sectors and provide greater risk reduction benefits when combined”. It also calls for “accelerating commitment and follow-through” from private sector actors.

11. What does the report say about adaptation?

The world is not adapting fast enough to climate change – and limits to adaptation have already been reached in some regions and ecosystems, the report says.

It says with very high confidence that there has been progress with adaptation planning and roll-out in all sectors and regions – and that accelerated adaptation will bring benefits for human wellbeing.

Adaptation to water-related risks make up more than 60% of all documented adaptation practices, the report says with high confidence

Examples of effective adaptation have occurred in food production, such as through planting trees on cropland, diversification in agriculture and water management and storages, the report says with high confidence.

“Ecosystem-based approaches”, such as urban greening and restoring wetlands and forests, have been effective in “reducing flood risks and urban heat”, it adds with high confidence.

In addition, combinations of “non-structural measures”, such as early warning systems, and structural measures such as levees have reduced deaths from flooding, the report says with medium confidence.

But, despite progress, most adaptation is “fragmented, incremental, sector-specific and unequally-distributed across regions”, the report says, adding:

“Adaptation gaps exist across sectors and regions, and will continue to grow under current levels of implementation, with the largest adaptation gaps among lower income groups.” 

Key barriers to adaptation include a lack of financial resources, political commitment and a “low sense of urgency”, the report says.

The total amount spent on adaptation has increased since 2014. However, there is currently a widening gap between the costs of adaptation and the amount of money set aside for adaptation, according to the report.

It says with very high confidence that the “overwhelming majority” of climate finance goes towards mitigation rather than adaptation. (See: Why is finance an ‘enabler’ and ‘barrier’ for climate action?)

It adds with medium confidence that financial losses caused by climate change can reduce funds available for adaptation – hence, leaving countries more vulnerable to future impacts. This is particularly true for developing and least-developed countries.

The report says with medium confidence that some people are already experiencing “soft limits” to adaptation. “Soft limits” are those where there is currently no way to adapt to the change, but there may be a way in the future. This includes small-scale farmers and households living in low-lying coastal areas.

Some areas have reached “hard limits” to adaptation, where no further adaptation to climate change is possible, the report says with high confidence. This includes some rainforests, tropical coral reefs, coastal wetlands, and polar and mountain ecosystems.

In the future, “adaptation options that are feasible and effective today will become constrained and less effective with increasing global warming”, the report says. It adds:

“With increasing global warming, losses and damages will increase and additional human and natural systems will reach adaptation limits.”

For example, the effectiveness of reducing climate risks by switching crop varieties or planting patterns – commonplace on farms today – is projected to decrease above 1.5C of warming, the report says with high confidence. The effectiveness of on-farm irrigation is projected to decline above 3C, it adds.

Above 1.5C of warming, small island populations and regions dependent on glaciers for freshwater could face hard adaptation limits, the report says with medium confidence.

At this level of warming, ecosystems such as coral reefs, rainforests and polar and mountain ecosystems will have surpassed hard adaptation limits – meaning some ecosystem-based approaches will become ineffective, the report says with high confidence.

By 2C, soft limits are projected for multiple staple crops, particularly in tropical regions, it says with high confidence. By 3C, hard limits are projected for water management in parts of Europe, it says with medium confidence

Even before limits to adaptation are reached, adaptation cannot prevent all loss and damage from climate change, the report says with high confidence. (See: What does the report say on loss and damage?)

(According to the Earth Negotiations Bulletin, China requested removing a reference to “adaptation limits” from one of the headline statements of the SPM. It was opposed by countries including the UK, Denmark, Germany, Saint Kitts and Nevis, the Netherlands, Switzerland, Mexico and Belize.) 

The report says with high confidence that sea level rise poses a “distinct and severe adaptation challenge”. This is because it requires dealing with both slow onset changes and increases in extreme sea level events such as storm surges and flooding.

The graphic below illustrates some of the adaptation responses to sea level rise, including the time it takes for implementation and their typical intended lifetimes.

Adaptation responses for sea level rise. Source: IPCC (2023) Figure 3.4b

“Ecosystem-based” approaches include enhancing coastal wetlands. Such approaches come with co-benefits for biodiversity and reducing emissions, but start to become ineffective above 1.5C of warming, the report says with medium confidence.

“Sediment-based” approaches include seawalls. These can be ineffective “as they effectively reduce impacts in the short-term but can also result in lock-ins and increase exposure to climate risks in the long-term”, the report says.

Planned relocation methods can be more effective if they are aligned with sociocultural values and involve local communities, the report says.

The report warns with high confidence that there is now more evidence of “maladaptation” – actions intended to adapt to climate change that create more risk and vulnerability.

Examples of maladaptation include new urban buildings that cannot easily be adjusted for climate risks or high-cost irrigation systems for agriculture in areas where droughts are projected to intensify, the report says.

Maladaptation “especially affects” marginalised and vulnerable groups, including Indigenous peoples, ethnic minorities, low-income households and people living in informal settlements. This can “reinforce and entrench” existing inequalities.

12. What are the benefits of near-term climate action?

The report is clear that fast action to mitigate emissions and adapt to climate impacts has a range of benefits – but acknowledges that it will likely be disruptive and have high up-front costs.    

The rate of climate change and the associated risks “depend strongly” on near-term climate action, the report says. The SPM notes with high confidence

“The choices and actions implemented in this decade will have impacts now and for thousands of years.” 

The overarching benefit of near-term mitigation action is less global warming over time and thereby fewer negative impacts, such as extreme weather events. 

Accelerated mitigation measures would also reduce future adaptation costs alongside other benefits, such as reducing the risk of irreversible climate changes, the synthesis report says.

A quick reduction in methane emissions, in particular, can limit near-term warming, the report says with high confidence. Methane has a much shorter lifespan in the atmosphere than CO2.

Delaying actions to prevent further warming will lead to a larger temperature rise, which will, in turn, make adaptation measures less effective, it says.

Adaptation actions can take a long time to be put in place. The report stresses that long-term planning and faster implementation, especially in this decade, “is important to close adaptation gaps”. 

Adaptation measures, the report adds, can improve agricultural productivity, innovation, health and wellbeing, food security, livelihood and biodiversity conservation.

Text on mitigation co-benefits for sustainable development Source: IPCC (2023) Full report, p59

There are other co-benefits to cutting emissions and taking faster action on adaptation. The SPM says that “deep, rapid and sustained” action in this decade would lower air pollution, spark more walking and cycling and prompt more sustainable, healthy diets. 

The money saved from a health perspective as a result of improved air quality “can be of the same order of magnitude as mitigation costs, and potentially even larger”, the report adds.

There are further economic benefits to near-term climate action, but the SPM says the cost-benefit analysis “remains limited” in assessing all avoided damages. 

Outside of the benefits of avoiding possible damages, the economic and social benefits of limiting global warming to 2C exceeds mitigation costs in most literature, the SPM says with medium confidence. 

The SPM says that faster mitigation with emissions peaking earlier increases the co-benefits of action and reduces risks and costs in the long-term. 

It further says, with high confidence, that near-term actions require “high up-front investments and potentially disruptive changes”. 

Barriers to deploy mitigation and adaptation actions need to be removed or reduced to utilise these options at scale, the report says.

To scale up these actions, the report says that both low- and high-cost options, such as using more renewables, making buildings more efficient and using electric vehicles, are required to avoid future lock-ins, advance innovation and start transformational changes.

Leaf charging at the Lionshead parking facility in Vail September 30, 2021.

The impacts of these changes can be “moderated” by reforms and policies in order to accelerate climate action such as improving access to finance for low-emissions infrastructure and technologies, especially in developing countries. 

Delaying action comes with multiple challenges, the report says, such as cost escalation risks, lock-in of infrastructure and stranded assets.

In other words, continuing to install unabated fossil fuel infrastructure will “lock-in” emissions into the future. And taking action on fossil-fuel burning sooner rather than later would limit the size of stranded assets – such as fossil-fuel infrastructure – that will be worth a lot less money in future in a world more reliant on low-carbon energy. 

Delaying action on this would increase policy risks and may endanger efforts to limit global warming, the report says with high confidence. 

Climate action is enabled by good climate governance providing an overall direction, the report says. 

This involves setting targets, including climate action in different policy areas, prioritising equitable decision-making and enhancing access to finance. The report adds that climate action benefits from drawing on a diverse range of knowledge. 

13. Why is finance an ‘enabler’ and ‘barrier’ for climate action?

Finance is one of the “critical enablers” to speed up climate action, the synthesis report outlines, and lack of funding is a barrier to progress. 

Difficulty accessing climate finance slows down both mitigation and adaptation action, particularly in developing countries, the report warns. Improving access to funds will help to accelerate climate action, the report says with very high confidence. 

It adds that funding for mitigation and adaptation needs to increase “many-fold” to achieve climate goals, address risks and speed up investment in emissions reductions. 

Global climate finance flows have increased and financing channels have broadened over the past decade, but the report notes that average growth has slowed since 2018. The report adds with high confidence

“Public and private finance flows for fossil fuels are still greater than those for climate adaptation and mitigation.”

It assesses that climate funding is “uneven” and has “developed heterogeneously across regions and sectors”, adding that the money falls short of what is needed to slash emissions and adapt to climate impacts.

There is enough global capital to close investment gaps, the report says, but “barriers” are preventing this funding being used instead for climate action. 

Closing gaps and improving access to finance, alongside other actions, can “act as a catalyst for accelerating” climate action, the SPM says. The report builds on this, saying: 

“​​Accelerated support from developed countries and multilateral institutions is a critical enabler to enhance mitigation and adaptation action and can address inequities in finance, including its costs, terms and conditions, and economic vulnerability to climate change.”

Many developing countries do not have enough financial resources for adaptation to help reduce associated economic and non-economic losses and damages, the report says. 

The SPM outlines with high confidence that increasing access to finance can help tackle “soft”, avoidable adaptation limits and avert some of the rising risks of climate change. (See: What does the report say about adaptation?)

The “overwhelming majority” of climate finance is geared towards mitigation. But this still falls short, the SPM saysadding with medium confidence

“Average annual modelled mitigation investment requirements for 2020 to 2030 in scenarios that limit warming to 2C or 1.5C are a factor of three to six greater than current levels, and total mitigation investments (public, private, domestic and international) would need to increase across all sectors and regions.”

Limited access to funding is listed as one of the key barriers to a number of actions including the adoption of low-emissions technology in developing countries. 

Harmful impacts of climate change can further reduce a nation’s climate financial resources by causing losses and damages and also impeding economic growth. This adds to the financial constraints for adaptation, especially in developing and least developed countries. 

The largest climate finance gaps and opportunities exist in developing countries, the report says, adding that more support is needed from developed nations and multilateral institutions to address inequities. 

This could come in the form of larger public grants for climate funding “for vulnerable regions, e.g., in sub-Saharan Africa,” the report says. It adds that these would be cost-effective and have high social returns in terms of access to basic energy.

Reducing the barriers standing in the way of committing more money to climate action would require “clear signalling and support by governments” through actions such as decreasing the perceived risks of climate investments and increasing the returns, the SPM says.  

Central banks, investors and other financial actors can change the “systemic underpricing of climate-related risks” and also reduce the “widening disparities” between the money available and the amount required, the SPM adds, noting: 

“Public finance is an important enabler of adaptation and mitigation, and can also leverage private finance.”

Developed countries pledged to provide $100bn in climate funding each year by 2020 to help developing countries deal with climate change. The SPM notes that, as of 2018, finance levels were below this goal. (In 2021, Carbon Brief analysed why climate finance flows are falling short.)

According to the Earth Negotiations Bulletin, India, supported by Saudi Arabia and Brazil, requested a reference to this goal in a section on the adoption of low-emission technologies to highlight the finance gap for developing countries. 

Tejal Kanitkar, India. Credit: IISD

The final report does reference the missed pledge elsewhere, but the text of low-emission technologies instead refers more broadly to the constraints of “limited finance”. 

The SPM says that climate-resilient development â€“ prioritising climate in all aspects of decision-making and policies – is aided by more international cooperation to improve access to finance and better align climate finance flows with the money required.

The report says faster global financial cooperation is key to aiding low-emission and just transitions. (A just transition is one in which workers and their communities are supported in the shift to a low-carbon economy, which is central to the idea of climate justice.) It can also address inequities in access to finance. 

In order to scale-up financial flows, the report says there must be lower regulatory market barriers, a stronger alignment of public finance and more public funding in an effort to reduce the perceived risks of low-emission investments. 

14. What are the co-benefits for the Sustainable Development Goals?

The Sustainable Development Goals (SDGs) were adopted by all UN member states in 2015 as the 2030 Agenda for Sustainable Development.

Comprising 17 goals, this “shared blueprint” for people and the planet recognises that ending poverty “and other deprivations” must accompany strategies that improve health, education, reduce inequality while combating climate change and protecting oceans and forests.

The synthesis report lays out how climate adaptation and mitigation actions can translate into co-benefits that aid countries’ efforts to meet their SDGs.

According to the report, both sets of actions have more potential synergies than potential trade-offs with the SDGs. This, however, depends on the scale and context of how mitigation and adaptation measures are implemented, the interactions between and within different sectors involved, cooperation between countries, governance, policy design and how these options are timed, sequenced and stringently deployed.

Ending “extreme poverty, energy poverty and providing decent living standards to all, consistent with sustainable development objectives…can be achieved without significant global emissions growth”, the report states with high confidence. 

The report’s summary recognises that countries are at different levels of development, seeking to improve the well-being of people. With high confidence, it states:

“Development priorities among countries also reflect different starting points and contexts, and enabling conditions for shifting development pathways towards increased sustainability will therefore differ, giving rise to different needs.”

Nonetheless, many mitigation and adaptation systems can help countries meet their near-term development goals in energy, urban and land systems, the report says with high confidence. 

Comanche Generating Station. Photo credit: Allen Best/Big Pivots

For instance, better air quality and improved health are some of the many co-benefits of deploying low-carbon energy systems, while urban mass transit powered by these systems can contribute to health, employment, energy security and “deliver equity”. 

Conserving, protecting and restoring ecosystems, while managing them to help communities adapt to climate impacts, can help regions attain their food security and biodiversity conservation goals, the report says with high confidence

In countries and regions that are highly dependent on fossil fuels – not just for energy, but revenues and jobs – mitigating risk calls for “just transition principles, processes and practices” and policies that promote economic and energy diversification, the SPM says with high confidence.

Mitigation actions that are embedded within a wider development context can, therefore, make for faster, deeper and wider emissions reductions, it states with medium confidence. 

But to design “context-relevant” actions and plan for their implementation “requires considering people’s needs, biodiversity, and other sustainable development dimensions”, the report states with very high confidence.

Importantly, the report calls “effective governance” to limit potential trade-offs of some mitigation choices – such as the risks posed by large-scale afforestation and bioenergy projects to food systems, biodiversity, ecosystems and livelihoods, it says with high confidence.

Crucially, this requires “adequate institutional capacity at all levels” to safeguard against trade-offs.

Mitigation and adaptation actions taken together – accounting for trade-offs – can benefit not just human well-being, but deliver better ecosystem and planetary health, the report states with high confidence. Social safety nets and land restoration are examples that serve both adaptation and mitigation goals, with co-benefits for poverty reduction and food security. 

However, there will be trade-offs, the report cautions. But these can be “evaluated and minimised” by giving weight to “capacity building, finance, technology transfer, governance, development, gender and social equity considerations with meaningful participation of local communities, Indigenous peoples and vulnerable populations”, it states with high confidence.

15. What does the report say about equity and inclusion?

“Equity remains a central element in the UN climate regime,” the SPM says. The report has a section dedicated to “equity and inclusion in climate change action”, which discusses how to ensure that those most vulnerable to the impacts of climate change can contribute to and benefit from climate mitigation and adaptation efforts.

The SPM says that “ambitious mitigation pathways imply large and sometimes disruptive changes in economic structure”. This can include a “shifting of income and employment” during the transition to low-emissions activities. 

But the report has high confidence that “social safety nets” and “redistributive policies” that “shield the poor and vulnerable” can resolve trade-offs for a range of sustainable development goals, such as education, hunger, poverty, gender and energy access.

For example, it has high confidence that “while some jobs may be lost, low-emissions development can also open up opportunities to enhance skills and create jobs”. The report emphasises the importance of “broadening equitable access” to the relevant finance, technologies and governance.

It adds: 

“Equity, inclusion, just transitions, broad and meaningful participation of all relevant actors in decision making at all scales enable deeper societal ambitions for accelerated mitigation, and climate action more broadly, and build social trust, support transformative changes and an equitable sharing of benefits and burdens”.

The report says that between 3.3 and 3.6 billion people are living in “contexts that are highly vulnerable to climate change”, where vulnerability is highest in “locations with poverty, governance challenges and limited access to basic services and resources, violent conflict and high levels of climate-sensitive livelihoods”. 

It says that adaptation can be used to moderate the risks of climate change and the authors have high confidence that “adaptation progress is unevenly distributed with observed adaptation gaps”. The report adds:

“Present development challenges causing high vulnerability are influenced by historical and ongoing patterns of inequity such as colonialism, especially for many Indigenous Peoples and local communities.”

To effectively address adaptation gaps and avoid maladaptation, the report says that “meaningful participation and inclusive planning, informed by cultural values, Indigenous knowledge, local knowledge, and scientific knowledge can help”.

The report also notes that different countries have their own priorities for development, which give rise to differing needs.

For example, it says that “in several countries just transition commissions, task forces and national policies have been established”, while in others, the principles of a just transition need to be integrated into policies through “collective and participatory decision-making processes”.

This section of the report also discusses behavioural interventions. It has high confidence that “individuals with high socioeconomic status contribute disproportionately to emissions, and have the highest potential for emissions reductions”. It says there are many options for reducing emissions from this group, which can be supported by policies, infrastructure, and technology.

Meanwhile, it has high confidence that, for lower-income groups, “eradicating extreme poverty, energy poverty, and providing decent living standards to all in these regions in the context of achieving sustainable development objectives, in the near-term, can be achieved without significant global emissions growth”. 

Will this smooth the renewable highs and lows?: Xcel Energy announces testing of 100-hour batteries in Pueblo by as early as 2025. Will this displace natural gas peaker plants? — @BigPivots

Xcel truck at Shoshone plant. Photo credit: Brent Gardner-Smith/Aspen Journalism

Click the link to read the article on the Big Pivots website (Allen Best):

Holy Cross Energy aims to distribute 100% emission-free electricity to its 55,000 members in the Aspen, Rifle, and Vail areas by 2030. How will it do that?

Tri-State Generation and Transmission, Colorado’s second largest utility, has a different but related problem. It wants to best use infrastructure associated with its coal-burning operations at Craig after the last unit closes before 2030.

One clue may lie in Pueblo. There a pilot program testing a new technology for long-duration energy storage will be deployed by Xcel Energy and Form Energy by the end of 2025. The new iron-air batteries will be able to use chemical processes to store electricity and then discharge it for up to 100 hours.

The new battery technology has been reported to be 10 times less expensive than lithium-ion batteries. Iron is abundant in the United States, and the batteries are non-flammable.

In announcing the pilot projects, Bob Frenzel, the chief executive of Xcel, said the 100-hour batteries at Pueblo and at a coal site in Minnesota “will strengthen the grid against normal day-to-day, week-to-week, and season-to-season weather variability, in addition to extreme weather events, including severe winter storms and polar vortex events.”

Duration of storage matters entirely as electric utilities add low-cost and emissions-free renewables. Short-duration storage, such as the lithium-ion batteries installed in conjunction with a new solar farm near Glenwood Springs in 2022, can help. They provide two to four hours of storage.

With 100 hours of storage, utilities can smooth the highs and the lows of renewables. Consider Uri, the week of cold in 2022 when wind on Colorado’s eastern plains ceased for several days. Utilities cranked up turbines burning natural gas that was suddenly in high demand. Consumers are still paying off those bills. Tri-State even resorted to burning oil.

Summers have brought inverse problems of spiking demand caused by heat. In 2021, it got so hot in Portland that electric lines for trains melted, and some people without air conditioning literally baked to death in apartments. Colorado regulators worry whether the state’s utilities can handle such weather extremes.

Iron-air batteries alone are unlikely to solve the intermittencies of renewable energy or the havoc produced by a warming and more erratic climate. This pilot project does represent a notable effort to explore whether they can be scaled.

“This is an exciting new frontier for energy storage in Colorado,” said Mike Kruger, chief executive of the Colorado Solar and Storage Association, a trade group of 275 members. “This announcement goes to show that when there is clear policy, American companies can innovate to meet the electric power sector’s needs.”

Holy Cross Energy has been diversifying its supplies, both locally and regionally, but still depends largely upon wholesale deliveries from Xcel. The Glenwood Springs-based cooperative in 2022 delivered 50% emissions free electricity but has a goal of 100% just seven years from now.

Sam Whelan, the vice president for finance at Holy Cross, said that increased reliability by Xcel will help Holy Cross reliably deliver electricity to its members.

Holy Cross has been investigating its own options—and has had conversations with Form Energy. It will look at many alternatives, including green hydrogen and pumped-storage hydro, each with problems but also promise.

“You have to start something, and you have to start in small increments as well,” says Whelan.

The solar industry, he also started small. “It was not that long ago that solar costs were significantly higher,” he observed. Now, solar has become competitive. “It will take these incremental storage projects to prove out and hopefully pave the way.”

Tri-State, at a recent meeting with stakeholders, also reported that iron-air storage technology was among several options for Craig being studied once the coal plants there close. Transmission lines already exist, capable of carrying renewable energy to the site to be stored – and then released as needed.

Xcel may have gleanings about how they will act at scale and be used to manage the grid by 2026.

Will these new batteries eliminate need for expensive natural gas plants designed for use to meet peak demands? Such plants are expensive to build, and they do produce emissions. Too soon to tell, says Robert Kenney, the president of Xcel Energy’s Colorado division.

“If we see success with this program, we will explore how we can expand it and scale it up further. But to what extent it will displace ‘peaker’ plants or any other technology, that would be the learning that we would expect to come out of the pilot itself. So stay tuned.”

Support for #Conservation Remains High in the West Despite a Rise in Other Concerns, New Poll Finds — State of the Rockies Report

Click the link to read the release on the State of the Rockies website [Spanish version here] (Jacob Hay):

Thirteenth annual Conservation in the West Poll reveals voters not willing to go backwards on conservation progress to address gas prices, cost of living, or water shortages

COLORADO SPRINGS—Colorado College’s 13th annual State of the Rockies Project Conservation in the West Poll released today [February 16, 2023] shows strong support for conservation policies among Westerners even as concerns around gas prices, cost of living, drought and water shortages remain high.

The poll, which surveyed the views of voters in eight Mountain West states (Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, Utah, and Wyoming), found support in the 70 to 90 percent range for conservation goals like protecting wildlife habitats and migration routes, ensuring healthier forests, preventing light pollution that blocks out the stars, and safeguarding drinking water.

From Bears Ears National Monument. Photo credit: Jonathan Thompson

82 percent of Westerners support achieving a national goal of conserving 30 percent of land and inland waters in America, and 30 percent of ocean areas, by the year 2030. Support for that proposal is up 9 percent since 2020, while opposition to the goal dropped by 5 percent during that time. In order to further conservation progress, 84 percent of Westerners support presidents continuing to use their ability to designate existing public lands as national monuments to maintain public access and protect the land and wildlife for future generations.

Voters express higher levels of concern than in the past over several issues that impact Western lifestyles. Asked what they consider to be extremely or very serious problems for their state, 65 percent of Westerners point to inadequate water supplies, 67 percent say drought, 69 percent say the low level of water in rivers, 78
percent 
name the rising cost of living, and 60 percent say the price of gasoline.

Those spiking concerns, however, are not dampening enthusiasm for conservation action across the West. Support remains high for a range of policies aimed at protecting land, water, air, and wildlife, including:

Highway 160 wildlife crossing 15 miles west of Pagosa Springs. Photo credit: Allen Best

85 percent support constructing wildlife crossing structures across major highways that intersect with known migration routes.

The tallest dunes in North America are the centerpiece of a diverse landscape of grasslands, wetlands, forests, alpine lakes and tundra at Great Sand Dunes National Park in Colorado. Photo credit: The Department of Interior

84 percent support creating new national parks, national monuments, and national wildlife refuges and Tribal protected areas to protect historic sites or areas of outdoor recreation.

Community solar garden in Arvada. Photo credit: Allen Best/Big Pivots

67 percent support gradually transitioning to 100 percent of energy being produced from clean, renewable sources like solar and wind over the next ten to fifteen years.

Hey, World! I’m Tye, and I’ve been hiking for about 10 years. Come join me on this hiking journey throughout the state of New York. To learn more about me: https://youtu.be/GH2NqOEWJoc. Photo credit: Hiking While Black

76 percent support directing funding to ensure adequate access to parks and natural areas for lower- income people and communities of color that disproportionately lack them.

Western San Juans with McPhee Reservoir in the foreground from the Anasazi Center Dolores

85 percent support ensuring Native American Tribes have greater input into decisions made about areas on national public lands that contain sites sacred or culturally important to their Tribe.

“This year voters in the West have a lot on their minds, but they are not willing to trade one priority for another,” said Katrina Miller-Stevens, Director of the State of the Rockies Project and an associate professor at Colorado College. “High gas prices, increasing costs of living, and water shortage concerns are not enough to move Westerners to reconsider their consistent support for conservation policies or seek out short-sighted solutions that put land and water at risk. In fact, people in the West want to continue our progress to protect more outdoor spaces.”

Dories at rest on a glorious Grand Canyon eve. Photo by Brian Richter

Locally, a variety of proposed conservation efforts are even more popular with in-state voters than they were when surveyed last year. In Arizona, 62 percent of voters support legislation to make permanent the current ban on new uranium and other mining on public lands surrounding the Grand Canyon. 90 percent of Coloradans agree with protecting existing public lands surrounding the Dolores River Canyon to conserve important wildlife habitat, safeguard the area’s scenic beauty, and support outdoor recreation. 84 percent of Montanans support enacting the Blackfoot Clearwater Stewardship Act to ensure hunting and fishing access, protect stream flows into the Blackfoot River, and add eighty thousand acres of new protected public lands for recreation areas, along with timber harvest and habitat restoration. In New Mexico, 88 percent of voters want to designate existing public lands in the Caja del Rio plateau as a national conservation area to increase protections for grasslands and canyons along the Santa Fe river and other smaller rivers flowing into the Rio Grande. 83 percent of Nevadans want to designate existing public lands in southern Nevada as the Spirit Mountain National Monument to ensure outdoor recreation access and help preserve sacred Native American sites.

Voters call for bold action on water conservation in line with heightened concerns

The level of concern among Westerners around water issues remains high in this year’s poll even amidst a notable uptick in winter precipitation across the West.

Colorado River “Beginnings”. Photo: Brent Gardner-Smith/Aspen Journalism

The Colorado River is held in high regard by voters in the states that rely on it. 86 percent say the Colorado River is critical to their state’s economy and 81 percent view it as an attraction for tourism and recreation. At the same time, 81 percent of voters say the Colorado River is at risk and in need of urgent action.

Concerns about water availability in the West translate into support for a variety of water conservation efforts, including:

95 percent support investing in water infrastructure to reduce leaks and waste.
88 percent support increasing the use of recycled water for homes and businesses.

87 percent support requiring local governments to determine whether there is enough water available before approving new residential development projects.

80 percent support providing financial incentives to homeowners and businesses to replace lawns and grassy areas with water-saving landscaping.

62 percent support prohibiting grass lawns for new developments and homes.

Rancher Bryan Bernal irrigates a field that depends on Colorado River water near Loma, Colo. Credit: William Woody

54 percent support providing financial incentives to farmers to temporarily take land out of production during severe water shortages.

Despite concerns over higher gas prices and cost of living, voters want a cleaner and safer energy future on public lands

In the face of higher gas prices and increased costs of living, Westerners still support proposals to limit the volume and impacts of oil and gas drilling on public lands.

The Four Corners methane hotspot is yet another environmental climate and public health disaster served to our community by industry. But now that we’ve identified the sources we can begin to hold those responsible accountable for cleaning up after themselves. The BLM methane rule and EPA methane rule are more clearly essential than ever. Photo credit: San Juan Citizens Alliance (2018)

91 percent support requiring oil and gas companies to use updated equipment and technology to prevent leaks of methane gas and other pollution into the air. 91 percent of voters support requiring oil and gas companies, rather than federal and state governments, to pay for all of the clean-up and land restoration costs after drilling is finished. 72 percent of voters support only allowing oil and gas companies the right to drill in areas of public land where there is a high likelihood to actually produce oil and gas.

Asked what should be the highest priority for meeting America’s energy needs, 65 percent of Westerners say it should be reducing our need for more coal, oil and gas by expanding the use of clean, renewable energy. That is compared to 32 percent who favor drilling and digging for more oil and gas wherever we can find it.

Given a choice of public lands uses facing lawmakers, 68 percent of voters prefer ensuring we protect water sources, air quality, and wildlife habitat while providing opportunities to visit and recreate on national public lands. By contrast, only 26 percent of voters would rather ensure we produce more domestic energy by maximizing the amount of national public lands available for responsible oil and gas drilling and mining.

This is the thirteenth consecutive year Colorado College gauged the public’s sentiment on public lands and conservation issues. The 2023 Colorado College Conservation in the West Poll is a bipartisan survey conducted by Republican pollster Lori Weigel of New Bridge Strategy and Democratic pollster Dave Metz of Fairbank, Maslin, Maullin, Metz & Associates. The survey is funded by the William and Flora Hewlett Foundation.

The poll surveyed at least 400 registered voters in each of eight Western states (AZ, CO, ID, MT, NV, NM, UT, & WY) for a total 3,413-voter sample, which included an over-sample of Black and Native American voters. The survey was conducted between January 5-22, 2023 and the effective margin of error is +2.4% at the 95% confidence interval for the total sample; and at most +4.9% for each state. The full survey and individual state surveys are available on the State of the Rockies website.

Colorado College is a nationally prominent four-year liberal arts college that was founded in Colorado Springs in 1874. The College operates on the innovative Block Plan, in which its 2,200 undergraduate students study one course at a time in intensive three and a half-week segments. For the past eighteen years, the college has sponsored the State of the Rockies Project, which seeks to enhance public understanding of and action to address socio-environmental challenges in the Rocky Mountain West through collaborative student-faculty research, education, and stakeholder engagement.

About Fairbank, Maslin, Maullin, Metz & Associates

Fairbank, Maslin, Maullin, Metz & Associates (FM3)—a national Democratic opinion research firm with offices in Oakland, Los Angeles and Madison, Wisconsin—has specialized in public policy oriented opinion research since 1981. The firm has assisted hundreds of political campaigns at every level of the ballot—from President to City Council—with opinion research and strategic guidance. FM3 also provides research and strategic consulting to public agencies, businesses and public interest organizations nationwide.

About New Bridge Strategy

New Bridge Strategy is a Colorado-based, woman-owned and operated opinion research company specializing in public policy and campaign research. As a Republican polling firm that has led the research for hundreds of successful political and public affairs campaigns we have helped coalitions bridging the political spectrum in crafting winning ballot measure campaigns, public education campaigns, and legislative policy efforts. New Bridge Strategy helps clients bridge divides to create winning majorities.

About Hispanic Access Foundation

Hispanic Access Foundation connects Latinos and others with partners and opportunities to improve lives and create an equitable society.

Say hello to Geospatial Energy Mapper

Click the link to go to the GEM website:

GEM is an interactive web-based decision support system that allows users to locate areas with high suitability for clean power generation and potential energy transmission corridors in the United States. Browse and download data layers, or create a custom suitability model to identify areas for energy development.

Save public lands: Put #solar on Walmart! — @HighCountryNews #ActOnClimate

Click the link to read the article on the High Country News website (Jonathan P. Thompson):

On a sunny day in early December, Interior Secretary Deb Haaland stood on a dais outside the Phoenix exurb of Buckeye, Arizona, where about 3,000 acres of desert had been scraped clean and leveled to make way for the Sonoran Solar Project, which will soon provide power to some 91,000 homes. 

Haaland came with good news for utility-scale solar and climate hawks: The Bureau of Land Management would review three massive solar projects proposed in Arizona and hoped to expedite permitting for solar energy on federal lands in Arizona, California, Nevada, New Mexico and Utah. “Solar energy projects on public lands will help communities across the country be a part of the climate solution, while creating good-paying jobs,” Haaland said. 

But these projects could also potentially uproot imperiled Joshua trees and cactus, kill or displace threatened desert tortoises, block wildlife migratory paths and harm local communities. This puts conservationists and policymakers in the difficult position of having to choose between saving the desert — or the planet. 

There are other ways, however, and other locations for solar panels, from residential rooftops to farm fields fallowed by drought. France, for instance, recently required large parking lots to be covered by solar canopies that shade cars and provide up to 11 gigawatts of new generating capacity, equivalent to about 10 times the three proposed projects in Arizona. 

This inspired us to ask: How much power could be generated by slapping solar panels not only over the West’s vast parking lots, but also on its 21,000 big-box store rooftops? We did the math, and this is what we found out. 

1,155 megawatts
Estimated generating capacity if solar panels covered all 370 miles of the Los Angeles Aqueduct, as LA officials propose.

37,500 gigawatt-hours per year
Energy output of solar canopies if all of Phoenix, Arizona’s 12.2 million parking spots were covered. 

139
Number of desert tortoises relocated to make way for the Yellow Pine Solar Project in southern Nevada in 2021. Within a few weeks, 30 of them were killed, possibly by badgers.

4,200 (215,000 acres)
Grazing leases bought and retired in the Mojave Desert in California by Avantus this year to protect wildlife habitat and Joshua trees. The Onyx Conservation Project is a partnership with federal and state land management agencies to “offset” the impacts of the company’s developments elsewhere in the region.

1.3 million
Estimated number of Joshua trees destroyed by the 2020 Dome Fire, thought to be exacerbated by climate change, in the Mojave National Preserve in California. 

Crews install solar panels on top of Denver Water’s administration building in 2019. Photo credit: Denver Water

Note: We worked from two figures that were calculated by Greta Bolinger and Mark Bolinger in “Land Requirements for Utility-Scale PV: An Empirical Update on Power and Energy Density,” published in the IEEE Journal of Photovoltaics in March 2022:

Power density: .35 megawatts per acre for utility-scale, fixed-tilt photovoltaics. Most residential solar systems are about 400 watts, or .0004 megawatts. 

Energy density: 447 megawatt-hours per year per acre for utility-scale fixed-tilt photovoltaics. An average American household uses about 10 megawatt-hours of electricity annually. 

We used Environment America’s figures and Google Earth’s measurements to determine that an average big-box store has 3.25 acres of rooftop. We used American Planning Association calculations to estimate that one acre contains about 145 parking spaces. 

Additional sources: BLM, EIA, Basin & Range Watch, UC Davis, Berkeley Lab, Avantus, Primergy, American Planning Association, USGS, Environment America, Google Earth.

Infographic by Luna Anna Archey/High Country News

Jonathan Thompson is a contributing editor at High Country News. He is the author of Sagebrush Empire: How a Remote Utah County Became the Battlefront of American Public Lands. 

Want to solve #ClimateChange? This #California farm kingdom holds a key — The Los Angeles Times #ColoradoRiver #COriver #aridification

Southern California’s Imperial Valley. Ted Wood/The Water Desk

Click the link to read the article on The Los Angeles Times website (Sammy Roth). Here’s an excerpt:

…welcome to the Imperial Valley. Wedged in California’s southeastern corner, it’s one of the most important places you’ve probably never been. To one side of [Ralph] Strahm’s farm is the Sonoran Desert at its most stark, where creosote-studded washes give way to glimmering sand dunes and craggy mountain peaks. To the other side is an astonishingly productive agricultural empire. Nearly half a million acres of lush green fields sprawl into the distance, popping out lettuce, sugar beets, onions, cattle feed and more…

But keeping the vegetable aisle stocked comes at a cost. Imperial County farm barons use more Colorado River water than the rest of California combined. And as the planet heats up, there’s less and less water to go around…

Clean energy advocates see Imperial as an ideal place for solar farms and battery projects that can help solve the American West’s energy and water crises. The land is flat; the sunlight, abundant. The Colorado River desperately needs relief. And Imperial is one of California’s poorest counties, its agriculture-heavy economy practically crying out for diversification and higher-paying jobs But resistance to change runs deep, particularly among the few hundred families who own all the farmland. Agriculture is the only way of life many of them have known, and they’re raring to defend it. Their ancestors settled here a century ago, staking an early claim to the Colorado and carving canals to carry its riches through the desert. Again and again, they’ve faced pressure to sell water to coastal cities. They’re ready to pounce on anything that smells like a water grab. And to some of them, solar power smells like a water grab…

Lurking beneath these battles are urgent questions with no easy answers: What is the land’s best use? Who gets to decide? And how do we balance water conservation, food production and clean power generation in an era of climate emergency?

A solar farm off CO 17 in Alamosa County. The San Luis Valley produces 10 percent more power per solar panel than anywhere else in the state due to its base elevation of 7,500 feet and more days of sun than the Front Range and anywhere else in Colorado. Photo by Owen Woods via The Alamosa Citizen