Downtown Denver from the Denver Art Museum. Photo/Allen Best
Click the link to read the article on the Big Pivots website (Allen Best):
Study finds that existing technology can get Colorado to near-zero electricity without need for breakthroughs in geothermal, nuclear or other realms. It will require a bit of natural gas.
Colorado can decarbonize its electricity very deeply by 2040 without busting the bank. But there’s a catch.
To hit this 98.5% decarbonization level will require accepting natural gas as 1% of the mix along with a small percentage of carbon-based electricity imported into Colorado. And getting there will not require still-costly emerging technologies.
That’s the take-away from a modeling study commissioned by the Colorado Energy Office.
How about 100% emissions-free electricity? That can be achieved, and in several different ways — all of them at a higher price, according to the modeling conducted by Ascend Analytics, a Boulder-based company.
The company modeled two other scenarios deploying deep levels of geothermal, hydrogen, and advanced nuclear reactors as well as other emerging technologies. Still another scenario examined the cost of using simply wind, solar, and existing battery technology. And one scenario emphasized local generation.
These five other scenarios came in at prices of $47.1 billion to $56.2 billion in net-present value — all substantially higher than the $37.5 billion of the less-than-perfect scenario using some natural gas.
Burning natural gas on an as-needed basis to ensure reliability will produce 565,000 metric tons of emissions in 2040. That compares with 40 million tons in 2005, according to the modeling study. This scenario also envisions a higher share of electricity , about 17%, being imported into Colorado.
All the scenarios in the modeling assume substantial amounts of improved energy efficiency, in effect partially eliminating the need for new generation. All models also assume that Colorado utilities will, as required by a state law, be participating in some sort of regional market for electricity by 2030.
Will Toor, director of the Colorado Energy Office, called the study results “huge.”
“The biggest takeaway of the study is understanding that we can get very deep emissions reductions, nearly zero emissions by 2040 while minimizing costs to utility customers. That is not something that we understood going into this study,” he said in an interview.
“As we look at developing the policy framework for 2040, it will be very much informed by that understanding,” he added.
The modeling study will likely deliver the justification for a bill in the legislative session beginning in January that would propose a new emissions-reduction target for Colorado’s electrical utilities. Laws adopted in 2019 and in subsequent years tasked those utilities with reducing emissions 80% by 2030. Most and perhaps all seem to be on track to get there with relative ease.
Some moving higher more quickly
Some utilities expect to get far higher—and soon. Notable is Holy Cross Energy, the electrical cooperative based in Glenwood Springs. It expects to achieve 92% emissions-free electricity by early in 2024 and has a goal of 100% by 2030.
Bryan Hannegan, chief executive of Holy Cross, has long said that the path to 90% was reasonably clear. The hard part, with answers still unknown, he has said, will be that final 10%. And unlike the path to 90%, that final leg will likely be more expensive.
The modeling has any number of assumptions. Some likely are further out on the limb than others.
All the scenarios assume a 40% increase in electrical demand across Colorado during the next 17 years. Population growth will drive some of this new demand. Increased demand will also result from electricity replacing fossil fuels in both transportation and building and water heating.
To satisfy this increased demand will require new generation. Just how much new generation will depend upon the type. Wind and solar exclusively from generators within Colorado coupled with battery storage would require 74,492 megawatts of installed capacity. Having natural gas available will require far less, 44,474 megawatts.
On a more micro level and with a concrete challenge, Platte River Power Authority — the supplier to Fort Collins, Loveland, Estes Park and Longmont — is putting together its resource plan looking out to 2030. Directors in 2018 identified a goal of 100% renewables by 2030 but also attached a handful of conditions to that goal. Five years later, Platte River’s planners don’t see a way to 100% by 2030, at least not without risking reliability or absorbing considerable costs. One scenario calls for 85% renewables. The plan, however, is not scheduled to be completed until June.
For an explanation of the reasoning for a unanimous resolution by Platte River’s board of directors, see a blog by Fort Collins Mayor Jeni Arndt, her city’s board representative.
The Crossing Trails Wind Farm between Kit Carson and Seibert, about 150 miles east of Denver, has an installed capacity of 104 megawatts, which goes to Tri-State Generation and Transmission. Photo/Allen Best
Transmission, seen by many as critical to deep levels of emissions reductions, gets relatively little mention in the modeling report. Arguably, an entire scenario could be built around potential for transmission upgrades, such as greater ease of moving electricity between the Western Interconnection grid, of which Colorado is a part, and the Eastern Interconnection, which starts at Kansas and Nebraska.
Ascend Analytics had conducted similar modeling about deep, deep decarbonization of electricity for Los Angeles Water and Power. The question in that study was what would it take for Los Angeles to achieve zero-emissions electricity?
Twenty years ago Colorado and its electrical utilities almost entirely embraced coal generation as the cheapest energy source far into the future. By 15 years ago, that resolve had weakened. Voters had adopted the state’s first renewable energy mandate and legislators had upped it. Wind prices were swooping down. Not least utilities had become confident of keeping lights on while deploying wind and solar.
A watershed year was 2017. Xcel Energy, Colorado’s largest utility, which supplies roughly half of the electricity in the state, sought bids for new electrical generation. The low prices for wind and solar dramatically undercut those of fossil fuels. Proponents of renewables were elated. A year later, Xcel Energy announced its plans for 80% decarbonization by 2030. The paradigm had shifted.
Most of those wind, solar, and storage projects bid in 2017 have now or soon will go on line. Statistics for 2023 are not yet available. However, as of 2022, renewable energy accounted for 37% of the state’s electrical generation, with wind power accounting for four-fifths of that renewable generation, according to the U.S. Energy Information Administration.
Two coal plants have closed since 2017 and now eight more will be laid down before the end of 2031. One, Pawnee, located at Brush, is to be converted to natural gas.
Toor said his agency began having discussions in 2022 about the next steps beyond 2030. The questions guided creation of the modeling study. The state called in utilities, environmental groups, industrial sectors, and others for conversations about how to frame the study.
What some said
Ean Tafoya, the Colorado director for GreenLatinos, a national advocacy group, said he remembers the first meeting occurring in May. Based on the number of those interested in environmental justice invited to participate as stakeholders, he suspects dozens of stakeholders were involved.
The results of the modeling Tafoya described as “very promising.”
“It shows me that the emerging technologies that my community has been very concerned about, that we don’t need them,” he said, referring to hydrogen, carbon capture and sequestration and direct-air capture as well as deep-well geothermal. “And if we can do this by 2040 without change of policy, that is very exciting.”
If Colorado can find ways to leverage capital through green infrastructure banking and address workforce training, Colorado “can truly be a leader nationally and globally,” he added.
Xcel Energy issued a statement that said the company was “encouraged by the Colorado Energy Office’s findings.”
“We agree there is a need for new 24/7 carbon-free technology to achieve deep carbon reductions. The state’s policies will enable us to reduce carbon emissions greater than 80% by 2030 and will inform our future investments into the local infrastructure necessary to move clean energy reliably into our customers’ homes – while keeping bills low.”
Do Colorado’s modeling results suggest a template for other states or regions of the United States, even other countries? Toor thinks so.
“It is saying that you can get to near-zero greenhouse gas emissions and pollution from electricity generation within the next 20 years —with no incremental cost to customers. That’s true with other states, and it doesn’t matter whether you’re a red state or blue state. “Regulators and utilities should be excited about the ability to minimize costs to customers while nearly entirely eliminating emissions. I think that is a really important conclusion.”
That said, added Toor, other states are starting at different places. “We have already had substantial progress.”
Colorado also is blessed with renewable resources. It has wind – not the best, but among the best. It also has strong solar. Again, not the best, but very good.
“I want to be careful about claiming insight into other states, but I do think it is a very striking result that you can achieve such deep pollution reductions simply by developing the lowest-cost resources,” said Toor.
In creating the documents, Ascent based its projected costs of various technologies on projections by the National Renewable Energy Laboratory but also Ascend’s Market Intelligence Team.
How fast will technology move?
Even with those presumably careful calculations based on strong information, how good are they? After all, 20 years ago, the cost numbers argued for coal. Incredibly, some people still try to make that argument.
Also 20 years ago, many smart people projected the imminent arrival of both peak oil and, by extension, peak natural gas. Those projections, based on rear-view mirror data, failed to anticipate the rapid incremental advances in hydrofracturing, horizontal drilling and other extraction technology. From $14.50 per million Btu in 2008, natural gas prices plummeted to $2.50 with the recession – but never returned to the stratospheric levels that justified poking very deep holes across the Piceance Basin southwest of Craig. Meantime, the U.S. became a net exporter of oil.
Of course, we have had similar cost curves with wind, then solar, and now storage prices.
Might the same thing occur with geothermal, using underground heat to produce electricity, as is already done in California and some other places? Sarah Jewett, vice president for strategy at Fervo Energy, suggested cause for similar optimism in her industry during her remarks at the Colorado Rural Electric Association conference on Monday. The cost curve in recent projects in Utah and Nevada has been bending downward, she said.
Earlier that same day, a panel of experts about nuclear energy reported cause for optimism about nuclear, while yet another panel predicted reason to believe hydrogen will play an important role in the future.
Toor acknowledged the unexpected cost declines for many technologies. “It’s quite possible that hydrogen and other technologies will be lower cost than now projected,” he said.
Regardless, he added, these near-zero or zero-emissions pathways should become the baseline.
“I think it would be important that utilities are looking at new technologies and that utility regulators are able to look at getting to even deeper reductions based on what the actual cost trajectories turn out to be,” he said.
Colorado’s energy regulation framework is well suited to achieving those deep reductions —even deeper than the low-cost 98.5% emissions-free that this modeling suggests will be possible.
A final report, after review by stakeholders, is expected in December.
Following are what the modeling study cites as its key findings. The language is verbatim from the report:
The Economic Deployment scenario, which relies on current state and federal policies and is projected to meet demand at the lowest cost, is projected to reliably meet electricity needs in 2040 while achieving 98.5% reduction in greenhouse gas emissions in 2040 from a 2005 level while also achieving near zero emissions reduction in nitrous oxide and sulfur oxide.
Wind and solar will be the main source of electricity in Colorado in 2040. In the Economic Deployment scenario, 76% of electricity comes from in-state wind and solar; 16% comes from out-of-state imports of near zero-emissions electricity (mostly wind from a wholesale electricity market); and 10% from energy efficiency, with the rest coming from other sources. Across all other scenarios, in-state wind and solar account for more than 90% of electricity.
In the Economic Deployment scenario, gas-fired electricity generation meets only about 1% of total need for electricity.
Under current cost assumptions, the Optimized 100 scenario, which achieves zero emissions by 2040 using a technology-neutral, least-cost approach, selects a substantial amount of hydrogen and a modest amount of geothermal to complement wind, solar, and batteries. It is 25% more expensive than the economic deployment scenario.
The Wind, Solar and Battery scenario is 20% more expensive than the Optimized 100 scenario and 50% more expensive than the least cost Economic Deployment scenario. The Accelerate Geothermal scenario is 11% more expensive than the Optimized 100.
The Optimized 100 scenario retires all gas-fired generation by 2040. It replaces retiring gas capacity primarily with clean hydrogen starting in 2032. By 2040, this scenario has 5,061 MW of clean hydrogen and 125 MW of geothermal generation.
The model does not select gas with carbon capture or advanced modular reactors in any scenario because of the cost.
The Accelerated Geothermal scenario adds a requirement to have 10% of demand met with geothermal in 2040, which results in 1,989 MW of installed capacity (compared to 125 MW in the Optimized 100 scenario).
Mauna Loa is WMO Global Atmosphere Watch benchmark station and monitors rising CO2 levels Week of 23 April 2023: 424.40 parts per million Weekly value one year ago: 420.19 ppm Weekly value 10 years ago: 399.32 ppm 📷 http://CO2.Earthhttps://co2.earth/daily-co2. Credit: World Meteorological Organization
Click the link to read the article on The Los Angeles Times website (Alex Wigglesworth and Ian James). Here’s an excerpt:
The expanse of Sierra National Forest near Shaver Lake is a relic of the climate before global warming. Scientists believe that the conifers won’t be able to survive the current conditions. Researchers at Stanford University found in a recent study that roughly one-fifth of all conifer forests in the Sierra are mismatched with the warmer climate and have become “zombie forests.”
[…]
The findings indicate that these lower-elevation Sierra conifer forests, which include ponderosa pine, sugar pine and Douglas fir, are no longer able to successfully reproduce. Conditions have become too warm and dry to support conifer saplings, whose shallow roots require plenty of water if they are to survive into adulthood, Hill said. Giant sequoias also grow in lower-elevation areas of the Sierra Nevada, but the researchers didn’t analyze the risks specific to those trees.
When these forests burn in high-severity wildfires — or are wiped out by drought, disease or pests — they will likely be replaced by other types of trees and brush, the scientists said. That could dramatically slash how much carbon the region can store; provide a habitat for invasive species; and displace plants and animals that call the forests home.
The clean-energy transition may be inevitable, but may not happen fast enough, IEA says
The flagship annual report from the International Energy Agency, dubbed the World Energy Outlook, offers a rosy prediction of the growth of clean-energy technologies around the world. It portrays the decline of fossil fuels, the main driver of rising global temperatures, as all but inevitable.
“The transition to clean energy is happening worldwide and it’s unstoppable,” IEA executive director Fatih Birol said in a statement. “It’s not a question of ‘if’, it’s just a matter of ‘how soon’ — and the sooner the better for all of us.”
[…]
The IEA envisions green technologies such as solar panels, wind turbines and electric cars taking off in the coming years, thanks to both supportive governmental policies and market forces. By 2030, it predicts:
Renewables’ share of the global electricity mix will approach 50 percent, up from around 30 percent today.
Three times as much investment will flow to offshore wind projects as to new coal- and gas-fired power plants.
The share of fossil fuels in the global energy supply will fall to 73 percent, down from about 80 percent today.
Still, demand for fossil fuels will remain too high for humanity to meet the goal of the Paris climate accord: limiting global temperature rise to 1.5 degrees Celsius (2.7 degrees Fahrenheit) above preindustrial levels, the report says. On the supply side, the United States is churning out record amounts of oil. Yet negotiators at this fall’s United Nations climate summit, known as COP28, can make certain commitments that help keep the Paris target within reach, the IEA said. They include pledges to triple global renewable energy capacity and double the rate of energy efficiency improvements.
The shiny new cold-weather air source heat pump installed summer 2023 at Coyote Gulch Manor.
Colorado and Wyoming are collaborating to support a regional team working to power innovative pathways toward climate resiliency by utilizing data, predictive modeling and cutting edge technology to address key challenges. The Colorado-Wyoming Regional Innovation Engine (CO-WY Engine) is one of 16 finalists in the first-ever National Science Foundation (NSF) Regional Innovation Engines Competition, which will award up to $160 million in funding over the next ten years.
Officials in both states recognize the opportunity to secure federal funding that will transform the region into a national leader in developing climate-resilient and sustainable technologies and expand economic opportunities and workforce development in these key areas.
To elevate the CO-WY Engine, Colorado and Wyoming have both committed to align resources that will support the Engine’s goals, including increased engagement of the business community with the region’s research institutions and Federal Labs; attracting more funding to support the commercialization and monetization of new technologies; and growing diversity within the region’s workforce to include rural communities.
“We are thrilled to partner with Wyoming on this plan as Colorado is leading our country on environmental tech to help address climate challenges. This funding will grow the work of our universities and federal labs while creating more jobs,” said Gov. Jared Polis.
“The pathway to a prosperous global future will be paved with adequate, affordable energy and a rigorous commitment to a healthy environment,” Gov. Gordon said. “Wyoming understands the urgency of addressing climate challenges. Our unequaled leadership in innovating and developing needed technologies supports Wyoming’s all-of-the-above energy strategy. This approach will grow our economy, develop our workforce and support thriving communities.”
The CO-WY Engine, spearheaded by Innosphere Ventures, looks to transform the region into a leader in the development and commercialization of climate-resilient and sustainable technologies. These technologies will support communities across the region and the country to monitor, mitigate and adapt to climate impacts. They are expected to have direct applications to water resource management, agriculture technology, and extreme weather, including wildfires and flooding.
“We can solve so many climate-related challenges with technology-driven solutions, and NSF funding will dramatically increase what we can accomplish,” said Mike Freeman, CEO of Innosphere Ventures and lead of the CO-WY Engine’s proposal to the NSF. “We are pleased to have the support of both Colorado and Wyoming, which have such a strong history of collaboration and share our commitment to creating an inclusive, nationally and internationally relevant Engine that employs a diverse workforce and benefits rural and urban communities alike.”
Among the initiatives being explored by Colorado and Wyoming, the Wyoming Business Council, Wyoming Venture Capital, the Colorado Office of Economic Development and International Trade, and Colorado’s Venture Capital Authority are assessing the possibility of a venture capital fund or funds that will invest in startups commercializing technologies that emerge from the CO-WY Engine.
These commitments build upon existing collaboration between the two states, including a four state Memorandum of Understanding (MoU) with New Mexico and Utah to create the Western Inter-State Hydrogen Hub to advance a regional hydrogen economy. Colorado and Wyoming have also signed an MoU outlining the states’ commitments to explore the development of direct air capture to reduce carbon dioxide in the atmosphere.
“Across the Midwest and Mountain States, Wyoming and Colorado rise to the top as one of only a handful of regions that have the talented workforce, collaborative business ecosystem, and research and development capabilities to become a national leader in developing climate resilient technologies. NSF funding will accelerate that growth exponentially, and we are committed to working with Colorado to seize this opportunity,” said Josh Dorrell, CEO of the Wyoming Business Council.
“In Wyoming, Colorado has found a nimble partner equally committed to growing a strong, diversified economy, engaging urban and rural communities alike, and leveraging our regional strengths to create new commercial opportunities that also create climate resiliency. Elevating shared priorities and resources like a regional venture capital fund will directly support the development of the CO-WY Engine as a national and global leader in climate-resilient technologies,” said Eve Lieberman, OEDIT Executive Director. The NSF Engines program envisions supporting multiple flourishing regional innovation ecosystems across the U.S., spurring economic growth in regions that have not fully participated in the technology boom of the past few decades.The NSF is expected to announce successful Regional Innovation Engines this fall.
Xcel Energy building in downtown Denver. Photo credit: Allen Best/Big Pivots
Click the link to read the article on the Big Pivots website (Allen Best):
A lot of money, of course, and a lot of new transmission in and around metropolitan Denver. What else is there in this package?
What an exciting time for Colorado.
We’re reinventing energy at a brisk pace that puts us in the front tier of states engaged — and also guiding — this necessary and critical transition.
And now we have specifics of what our largest electrical utility, Xcel Energy, with 1.6 million customers, prefers to do in meeting expanding demands for electricity while complying with a raft of state laws adopted beginning in 2019.
“This plan is transformational,” says Xcel in its filing from Monday night with the Colorado Public Utilities Commission. Yep.
You can download the report, “Our Energy Future: Destination 2030” Or go to the PUC e-files in proceeding 21A-0141E and look for Public 2021 ERP & DCEP.. There are several dozen related documents in the docket.
You’ve probably read the about this in the Denver Post or elsewhere. Lots of statistics. The most important one in 184 pages of statistics is this:
Xcel expects to be at 80% to 85% emissions-free energy by 2030. That not just a reduction as compared to 2005 levels. The law adopted in 2019 required it to achieve 80% reduction. This plan, if adopted and executed, goes higher. This is more than reduction. It goes roughly 10% higher.
The company says it can deliver this with a rate impact of about 2.25% annually. This compares with the projected rate of inflation of 2.3% during the remainder of the 2020s.
Too much? Well, Xcel does look out after its own financial interests. Robert Kenney, the president of Xcel’s Colorado division, made the case for reward for capital invested in an exchange Tuesday night with self-appointed and dedicated Xcel watchdog Leslie Glustrom at Empower Hour.
“I do believe we have seen the investor-owned utilities (around the country) spur innovation for nascent technologies into maturity,” said Kenney, who before his arrival in Colorado in June 2022 spent seven years with PG&E in California and, before that, as a PUC commissioner in Missouri for six years.
Xcel is moving boldly with the $14 billion in energy investments identified in this plan, but it may not even be the most impressive feat in Colorado. Holy Cross still says it expects to be at 100% emissions-free energy by 2030. And Tri-State, too long the epitome of a drag-your-feet G&T, is not terribly far behind — if it can keep its members. But that’s another story.
Xcel was reluctant to go forward with its first major wind farm, completed in 2004, but now has much wind — and will add far more in the next few yeas. Photo near Cheyenne Wells, Allen Best
Keep in mind, this is not just fuel switching. It’s also fuel expansion. We will need double or triple the electricity as we electrify buildings and transportation. We’ve barely begun.
This is on top of population expansion within metro Denver, the primary market for Xcel Energy. Xcel projects increased demand (called load, in the terminology of electrical providers) at 300 megawatts by 2026.
Xcel’s report notes that the population growth in the Denver metro area has consistently outpaced the national rate in every decade since the 1930s.
That said, much in Xcel’s preferred plan was unsurprising. It lays out a broad program for 6,545 megawatts of new renewable projects, broken down in this way:
3,400 megawatts for wind;
1,100 megawatts of solar;
1,400 megawatts of solar combined with storage;
19 megawatts of biomass (forest trees at a plant in Hayden);
600 megawatts of standalone storage.
And to think, aside from the 340-megawatt Cabin Creek pumped-storage hydro at Georgetown, Colorado’s largest battery storage facility last winter was still only 5 megawatt-hours (at the Holy Cross project between Glenwood Springs and Basalt).
This year, Xcel has added 225 megawatts of battery storage to Front Range locations. That was the result of a 2016 resource plan. These things do take time.
Xcel said it proposes six times more storage as compared to its contemplation earlier in this process — a result directly of incentives provided by the Inflation Reduction Act of 2022.
That federal package also delivers other benefits. It will, says Xcel, bring “billions of dollars in federal support to Colorado.” It estimates $10 billion in IRA benefits to customers.
Big investment in transmission
Transmission figures prominently in this plan.
PUC commissioners last fall approved the Power Pathway Project, a $1.7 billion string of high-voltage transmission lines looping 560 miles from near the Pawnee power plant at Brush and around the eastern plains and back to the Front Range. Construction began in June.
Xcel says its “existing transmission system is capable of reliably serving our customers today, but the energy transition cannot be accomplished with only minor changes to the transmission system.”
This plan proposes an additional $2.82 billion in transmission investments.
Part of that is the May Valley-Longhorn extension from the May Valley substation north of Lamar to Baca County, in the state’s southeastern corner. The 50-mile extension, called Longhorn — as most everything is called in the Springfield area — would cost $252 million. It figures prominently in Xcel’s plans because, as this report explains, Xcel finds the wind to be of low cost and its characteristics complementary to wind in other locations.
“Wind generation in the southeast portion of Colorado exhibits materially different generation patterns and will thus be a useful improvement to our system in adding geographic diversity to our overall renewable generation portfolio.”
Or, to paraphrase what I heard from locals in a visit there last week: the wind always blows in Baca County. They can describe the different winds with the expertise that a wine connoisseur might apply to various vintages.
Xcel says the Longhorn transmission extension will deliver 1,206 megawatts of wind. It also says that this wind will save the company – and hence consumers – a great deal of money: $282 million.
That deserves a wow!
However, if that Baca County wind were excluded, there would be more solar and storage.
The San Luis Valley also stands to get transmission upgrades. Appendix Q in the filings says this:
“The area has rough, remote, and challenging geography and weather, significant permitting issues due to a patch work of state and federal land use designations (conservation easements, U.S. Forest Service-managed land, National Park Service managed lands, and multiple state-protected areas).”
Electrical deliveries arrive almost entirely via three transmission lines crossing Poncha Pass. The valley residents are served by both Xcel and by Tri-State members. Both utilities have tried to create solutions since a 1998 study identified the problems. Some Band-Aids have helped.
Xcel proposes to spend $176 million to improve the situation in the San Luis Valley. Additional transmission would also open the door to development of new solar.
Most surprising to me — likely because I do not read the filings on the PUC dockets religiously – is how much Xcel believes it needs to spend in metro Denver: $2.146 billion.
It justifies the expense with this explanation.
“The company’s analysis shows that a new phase of the transition is emerging – reliably managing power transmission within and around the metropolitan area,” says the report. (Page 33).
“Delivery of remote resources is still an important consideration of transmission planning, as evidenced by the critical role that the CPP (Colorado Power Pathway) plays in enabling the preferred plan. However, as the company moves toward a grid powered primarily by renewable resources, and less reliant on legacy urban power plants, transmission investments are increasingly focused on enhancing the capacity and resiliency of the entire transmission grid —including those parts of the grid located closest to our customers’ homes and businesses.”
Why so much money for transmission upgrades in metro Denver? In part, says Xcel, it’s because of the lack of bids for resources within the metro area. The report and an accompanying appendix do not discuss reasons why the company failed to get those close-in resources.
That takes us to natural gas —and the related issue of how well Xcel can meet peak demands caused by extreme weather. The environmental community has been insistent that Xcel needs to reduce or eliminate its investment in natural gas generation. Xcel has maintained that natural gas must remain part of the equation, at least in this planning period, because alternatives have not yet been firmed up.
The company proposes to have 628 megawatts of capacity. This, it says, will solve the “reliability and resiliency variables” of a hot period in the summer of 2028.
In short, Xcel has to prepare for hot summers and cold winters. The base case is a hot spell in July 2022 and Winter Storm Uri of 2021. At both times, renewables underperformed. (I might have thought reference cases to a much hotter time of the future would have been used, but maybe I’m missing something).
What enables Xcel to meet the peak demands for cooling or heating? It could add on even more proven storage, altogether 3,700 megawatts worth, and over 13,000 megawatts of renewables, but at a cost of $5.4 billion more than this plan.
Instead, Xcel sees natural gas being the answer. The company emphasizes modeling that shows the new 400 megawatts of natural gas-created electricity will be needed only 5% of the time. Most of the time, they will sit idle. But, when needed, some can ramp up in a matter of 2 to 10 minutes, others as long as 30 minutes. This compares with coal plants, which mostly took 18 hours to ramp up.
Xcel is proposing a reserve margin of 18%. That’s how much capacity it plans on top of what it thinks it needs. All utilities have some reserve margins.
Game changers in next few years?
Storage is a major component of this part of this Xcel pivot and energy transition story altogether.
“The availability of cost-competitive utility-scale storage is reducing, but not eliminating, the need for new carbon emitting capacity resources – namely in inclement weather and during long-duration high-load situations,” says Xcel.
Will we get a break-through that will change the narrative?
Xcel plans a demonstration project at Pueblo that it expects to get underway in late 2024 to test the efficacy of a new storage technology called iron-rust that the developers believe can store energy for up to 100 hours. Along with its partner, Form Energy, it received a $20 million grant in April from the Breakthrough Energy Catalyst. This week, Xcel announced a grant of up to $70 million from the U.S. Department of Energy. Both grants are to be split between the Pueblo project and a parallel project in Minnesota.
If this proves out, does this change the ball game, largely eliminating the need for natural gas?
Xcel nods at this question, pointing to modeling results that “Highlighting the need for further advancements in technology and a more diverse portfolio of resources may be needed to help economically reach our clean energy goals in the future.”
It also talks about using fuels other than natural gas – think hydrogen and ammonia and biogas —in these plans.
This natural gas component will be the most hotly disputed element of the Xcel plan—as it has been for the last two years.
Also raising my eyebrows in this 120-day report:
New technologies
A recent Colorado law sought to nudge utilities into accelerating new technology. The rule-making by the PUC in regard to this Section 123 provision specified that the resources must be “new, innovative, and not commercialized technology, and provide unique, scalable and beneficiation attributes as to future costs, emissions, reduction, or reliability benefits.” “Wind, solar or lithium-ion based battery storage,” concluded the PUC, do not qualify.
Xcel solicited bids and got a variety of proposals, including:
a plant in the San Luis Valley that could burn a variety of clean fuels including hydrogen and ammonia;
a hydrogen fuel cell project near Brush that would use salt-storage caverns to deliver 10-hour storage;
a 5-megawatt geothermal power plant in Weld County that would mine the 135 degree C (275 degrees F) non-potable water found deep underground.
Xcel found all of these proposals from bidders wanting for one reason or another. However, that’s not a solid no in all the cases, the company added.
Xcel Energy proposes a small biomass at Hayden, site of the current Hayden Generating Station. It says skill sets can transition relatively easily. Photo/Allen Best
Biomass at Hayden
The company proposes a 19-megawatt biomass plant at Hayden, burning dead trees from northwest Colorado to produce electricity. Colorado has an existing biomass plant at Gypsum, which is a little smaller, 11.5 megawatts, in capacity. It burns wood from as far away as the Blue River Valley between Silverthorne and Kremmling.
Workforce transition
The company points out that it has closed 18 generating units across its service territory during the last 15 years without any forced workforce reductions.
It says it will leverage natural attrition and worker retirements, and the remaining workers will be “up-skilled to operate and maintain the new clean energy assets or, if they choose, relocated and or transited and reskilled into another job.”
For example, it says, workers at the Hayden coal-burning plant have 80% of the skills, on average, needed to operate and maintain a biomass unit. The company says it will work with the biomass unit vendor, Colorado Northwestern Community College, and others to identify the additional training needed.
Pueblo solicitation
As part of its plans for Pueblo, where the Comanche 3 coal-burning plant is scheduled for retirement by 2031, Xcel plans to solicit bids that will fill out what the company needs in that final segment of 2028-2030.
The projects need to help out Pueblo County economically, even though Xcel has already committed to paying taxes on Comanche 3 in lieu of its operation until 2040.
Will it be nuclear? Xcel has not ruled out nuclear, but neither does it see nuclear as an option for 2030.
Xcel Energy Colorado’s CEO Kenney, in his remarks at Empower Hour, said the company sees small modular reactors and related technology under development as having promise.” But, he added, “It is unlikely such technologies will be trued up on a timeline to replace Comanche 3. But it will absolutely be a technology that we will continue to explore.”
Social cost of carbon
The planning considerations for this are so much more complex than those of the past. Decisions must be filtered through the social cost of carbon and also the social cost of methane. There are considerations about disproportionately impacted communities. And, as noted above, we have “just transition” as a consideration.
The simile of a triathlon race
Such documents are not ordinarily noted for their literary flourishes, and this one is no exception. But it must be noticed that aa simile found on page 62 is worth calling out:
“Getting to this point is like training to get to the starting line of a triathlon. We are excited, we have a support team at the ready, we understand the challenges, and we are looking forward to taking them on with a good plan in place. But that does not mean that implementation and execution of the plan will be easy, and unknown challenges lie ahead given the breadth of generation and transmission development contemplated by this plan.”
Colorado Green, located between Springfield and Lamar, was Colorado’s first, large wind farm. Photo/Allen Best
Dave Marston has written a profile of friend of Coyote Gulch Allen Best. Click the link to read the article on the Writers on the Range website (David Marston):
Usually seen with a camera slung around his neck, Allen Best edits a one-man online journalism shop he calls Big Pivots. Its beat is the changes made necessary by our rapidly warming climate, and he calls it the most important story he’s ever covered.
Best is based in the Denver area, and his twice-a-month e-journal looks for the radical transitions in Colorado’s energy, water, and other urgent aspects of the state’s economy. These changes, he thinks, overwhelm the arrival of the telephone, rural electrification and even the internal combustion engine in terms of their impact.
Global warming, he declares, is “the biggest pivot of all.”
Whether you “believe” in climate change — and Best points out that at least one Colorado state legislator does not — there’s no denying that our entire planet is undergoing dramatic changes, including melting polar ice, ever-intensifying storms, and massive wildlife extinctions.
A major story that Best, 71, has relentlessly chronicled concerns Tri-State, a wholesale power supplier serving Colorado and three other states. Late to welcome renewable energy, it’s been weighed down with aging coal-fired power plants. Best closely followed how many of its 42 customers — rural electric cooperatives — have fought to withdraw from, or at least renegotiate, contracts that hampered their ability to buy cheaper power and use local renewable sources.
Best’s first newspaper job was at the Middle Park Times in Kremmling, a mountain town along the Colorado River. He wrote about logging, molybdenum mining and the many miners who came from eastern Europe. His prose wasn’t pretty, he says, but he got to hone his skills.
Because of his rural roots, Best is most comfortable hanging out in farm towns and backwaters, places where he can listen to stories and try to get a feel for what Best calls the “rest of Colorado.” Pueblo, population 110,000 in southern Colorado, is a gritty town he likes a lot.
Pueblo has been forced to pivot away from a creaky, coal-fired power plant that created well-paying jobs. Now, the local steel mill relies on solar power instead, and the town also hosts a factory that makes wind turbine towers. He’s written stories about these radical changes as well as the possibility that Russian oligarchs are involved in the city’s steel mill.
In 2015, signs supporting coal were abundant in Craig, Colo. Photo/Allen Best
Best also vacuums up stories from towns like Craig in northwestern Colorado, home to soon-to-be-closed coal plants. He says he finds Farmington, New Mexico, fascinating because it has electric transmission lines idling from shuttered coal power plants.
His Big Pivots may only have 1,091 subscribers, but story tips and encouragement come from some of his readers who hold jobs with clout. His feature “There Will Be Fire: Colorado arrives at the dawn of megafires” brought comments from climate scientist Michael Mann and Amory Lovins, legendary co-founder of The Rocky Mountain Institute.
“After a lifetime in journalism, his writing has become more lyrical as he’s become more passionate,” says Auden Schendler, vice president of sustainability for the Aspen Ski Company. “Yet he’s also completely unknown despite the quality of his work.”
Among utility insiders, and outsiders like myself, however, Best is a must-read.
His biggest donor has been Sam R. Walton’s Catena Foundation — a $29,000 grant. Typically, supporters of his nonprofit give Big Pivots $25 or $50.
Republican River in Colorado January 2023 near the Nebraska border. Photo credit: Allen Best/Big Pivots
Living in Denver allows him to be close to the state’s shot callers, but often, his most compelling stories come from the rural fringe. One such place is the little-known Republican River, whose headwaters emerge somewhere on Colorado’s Eastern Plains. That’s also where Best’s grandfather was born in an earthen “soddie.”
Best grew up in eastern Colorado and knows the treeless area well. He’s written half a dozen stories about the wrung-out Republican River that delivers water to neighboring Kansas. He also sees the Eastern Plains as a great story about the energy transition. With huge transmission lines under construction by the utility giant Xcel Energy, the project will feed renewable power from wind and solar to the cities of Denver, Boulder and Fort Collins.
Best admits he’s sometimes discouraged by his small readership — it can feel like he’s speaking to an empty auditorium, he says. He adds, though, that while “I may be a tiny player in Colorado journalism, I’m still a player.”
He’s also modest. With every trip down Colorado’s back roads to dig up stories, Best says he’s humbled by what he doesn’t know. “Just when I think I understand something, I get slapped up the side of the head.”
Dave Marston is the publisher of Writers on the Range, writersontherange.org, an independent nonprofit dedicated to spurring lively conversation about the West. He lives in Durango, Colorado.
Just for grins here’s a gallery of Allen’s photos from the Coyote Gulch archives.
Top photo, Vestas located a factory to produce wind turbines in Pueblo in 2010 and has added other renewable energy elements even as the coal-burning units have begun to retire. Photo credit: Allen Best
The Thunder Wolf Energy Center east of Pueblo, near Avondale, has 100 megawatts of battery storage. Credit: Big PivotsRebecca Mitchell. Photo credit: Allen BestPhoto credit: Allen Best/Big PivotsThe Yampa River emerging from Cross Mountain Canyon in northwest Colorado had water in October 2020, but only the second “call” ever was issued on the river that year. Photo/Allen BestOn May 17, Rabbit Ears Pass still had plentiful snow for Muddy Creek, a tributary to the Colorado, and for the Yampa River tributaries. Photo/Allen BestByron Kominek on a February afternoon at the site of his late grandfather’s farm, which he calls Jack’s Solar Garden. Photo/Allen BestThis canal in the South Platte Valley east of Firestone, north of Denver, could conceivably also be a place to erect solar panels without loss of agricultural productivity. Photo/Allen BestCanal in the San Luis Valley. Photo credit: Allen Best/Big PivotsSnow blankets buildings and all else in Steamboat Springs. The larger of the two ski areas there had received as much snow by mid-January ad it did all of last season. Photo/Allen Best
Bill McKibben, right, conferring with Land Institute founder Wes Jackson at the 2019 Prairie Festival, has strongly motivated many, including some CRES members. Photo/Allen BestIrrigation in the San Luis Valley in August 2022. Photo/Allen BestNorthern Colorado on July 9, 2021, sunset with Longs Peak in the background. Photo credit: Allen Best/Big PivotsHorizontal sprinkler. Photo credit: Allen Best/Big PivotsA turbine whirls on a farm east of Burlington, Colo. Colorado’s eastern plains already have many wind farms—but it may look like a pin cushion during the next several years. Photo/Allen BestSan Juan Mountains December 19, 2016. Photo credit: Allen BestVail has begun methodically removing grass from its parks from areas that serve little purpose, partly with the goal of saving water. Buffehr Creek Park after xeriscaping. Photo: Town of Vail Glen Canyon Dam, December 2021. Credit: Allen BestYampa River. Photo credit: Allen Best/The Mountain Town NewsSaguache Hotel. Photo credit: Allen Best/The Mountain Town NewsSkyline Drive at night Cañon City. Photo credit: Vista Works via Allen Best/The Mountain Town NewsThe proposal would have Xcel continue tax payments to Pueblo and Pueblo County until 2040.Drilling rigs along the northern Front Range in 2013. Photo/Allen Best
Buried methane gas lines. Photo credit: Allen Best/Big Pivots
Click the link to read the article on the Big Pivots website (Allen Best):
Colorado is starting another chapter in what could be a future history book, “How We Decarbonized our Economy.”
In that book, electricity will be the easy part, at least the storyline through 80% to 90% reduction in emissions. That chapter is incomplete. We may not figure out 100% emissions-free electricity on a broad scale for a couple more decades.
This new chapter is about tamping down emissions associated with buildings. This plot line will be more complicated. Instead of dealing with a dozen or so coal plants, we have hundreds of thousands of buildings in Colorado, maybe more. Most burn natural gas and propane to heat space and water.
I would start this chapter on August 1. Appropriately, that’s Colorado Day. It’s also the day that Xcel Energy and Colorado Springs Utilities will deliver the nation’s very first clean-heat plans to state regulators.
Those clean heat plans, required by a 2021 law, will tell state agencies how they intend to reduce emissions from the heat they sell to customers. The targets are 4% by 2025 and 22% by 2030.
Wishing I had a sex scandal to weave into this chapter or at least something lurid, maybe a conspiracy or two. Think Jack Nicholson and Faye Dunaway in “Chinatown.”
Arguments between utilities and environmental advocates remain polite. Both sides recognize the need for new technologies. The disagreements lie in how best to invest resources that will pay off over time.
The environmental groups see great promise in electrification, particularly the use of air-source heat pumps. Heat pumps milk the heat out of even very cold air (or, in summer, coolness from hot air).
Good enough for prime time? I know of people in Avon, Fraser, and Gunnison who say heat-pumps deliver even on the coldest winter days.
Xcel says that heat pumps have a role—but cautions that cold temperatures and higher elevations impair their performance by about 10% as compared to testing in coastal areas. They will need backup gas heat or electric resistance heating. After two winters of testing at the National Research Energy Laboratory in Golden, the testing of heat pumps will move to construction trailers set up in Leadville, Colorado’s Two-Mile City next winter.
Xcel also frets about adding too much demand, too quickly, to the electrical grid.
Another, perhaps sharper argument has to do with other fuels that would allow Xcel to use its existing gas pipelines. Xcel and other gas utilities have put out a request for renewable natural gas, such as could be harvested from dairies. Xcel also plans to create hydrogen from renewable resources, blending it with natural gas. It plans a demonstration project using existing infrastructure in Adams County, northeast of Denver.
Jeff Lyng, Xcel Energy’s vice president for energy and sustainability policy, talks about the need for a “spectrum of different approaches.” It is far too early, Lyng told me, to take any possible technology off the table.
In a 53-page analysis, Western Resource Advocates sees a greater role for weatherization and other measures to reduce demand for gas. It sees renewable gas, in particular, but also hydrogen, as more costly and slowing the broad market transformation that is necessary.
“I think there’s a real tension that came out between different visions of a low-carbon future when it comes to the gas system,” Meera Fickling, an economist with WRA, told me.
We already have a huge ecosystem of energy, a huge investment in natural gas. Just think of all the natural gas lines buried under our streets. No wonder this transition will be difficult.
“It’s more difficult because everything you do in the gas sector now has a spillover effect in the electric sector,” says Jeff Ackermann, the former chair of the Colorado Public Utilities Commission. “Each of these sectors moves in less than smooth, elegant steps. We don’t want people to fall off one and onto the other and get lost in the transition. There has to be sufficient energy of whatever type.”
Getting back to the book chapter. Colorado has nibbled around the edges of how to end emissions from buildings. With these proceedings, Colorado is moving headlong into this very difficult challenge. The foreplay is done. It’s action time.
Xcel talks about a decades-long transition and stresses the need to understand “realistic limitations in regard to both technologies and circumstances.”
Keep in mind, 25 years ago, it had little faith in wind and even less in solar.
Do you see a role for Jack Nicholson in hearings and so forth during the next year? I don’t. Even so, it promises to be a most interesting story.
The shiny new cold-weather heat pump recently installed at Coyote Gulch Manor.
Vestas located a factory to produce wind turbines in Pueblo in 2010 and has added other renewable energy elements even as the coal-burning units have begun to retire. Photo credit: Allen Best
Click the link to read the article on the Big Pivots website (Allen Best):
Every transition produces winners and losers. U.S. fiscal policy shifted in the 1880s and the economy of Aspen cratered for decades. Some silver-mining towns never recovered. In the 1980s, newspapers were plentiful. Ink now stains far fewer printers and editorial wretches. Amazon thrives but Sears and Kmart, no more.\
How will Colorado’s coal-based towns transition as we quell emissions from energy production? Legislation of recent years seeks to deliver what lawmakers call a just transition, meaning that Pueblo, Craig and other coal-based communities will stay on their feet.
The newest round of job-producing investments in emission-free technologies, though, call into question how difficult that will be. Two new factories are to be created in Brighton, on metropolitan Denver’s northeastern fringe. The combined investment of $450 million will deliver more than 1,200 average- to better-paying jobs.
VSK Energy will manufacture solar photovoltaic panels and will employ more than 900 people. It is a direct result of incentives in the federal Inflation Reduction Act of 2022, which seeks to restore U.S. manufacturing of renewable energy components.\
The second factory will produce a new generation of energy-rich lithium-ion batteries. The company, Amprius Technology, says that a new anode, which will use silicon mined in Montana, will double the range of a Tesla, allowing it more than enough capacity to roam Colorado from corner to corner and the ability to juice up to 80% capacity in six minutes. The company also says the new batteries will deliver value to drones and aircraft. Sounds like a game-changer.
Both companies cited proximity to Interstate 76 as a significant consideration in siting their factories. They also have proximity to I-25, I-70 and I-80 plus Denver International Airport. If of not immediate importance, they also have access to transcontinental rail lines.
Availability of a large, skilled workforce was also cited. The battery company also cited the proximity of the Colorado School of Mines and other universities. It will employ a half-dozen Ph.Ds. in the research facility associated with the factory.
Something more intangible was also in play. It was described as a “strong cultural fit” by Ashwini Agarwal, the leader of Vikram Solar, the parent company for the solar manufacturer. Supply chains matter, but Colorado’s initiative in accelerating the energy transition also matters.
Andrew Huie, the vice president of infrastructure for Amprius, said something similar. “Colorado and Gov. Polis are embracing clean energy, and batteries align with Colorado’s clean energy goals,” he told me. “There may be synergies.”
This warehouse ion Brighton, once the distribution center for Sears and Kmart and most recently as a storage location for Costco appliances, is to become home to a lithium-ion battery factory. Rezoning to light industrial will first be necessary. Photo/Allen Best
Other companies are also carving out futures in this new energy economy along the Front Range. The Denver Business Journal recently cited three companies from Denver to Fort Collins that hope to stake a future with new batteries. And Lightning eMotors manufactures electric vehicles in Loveland.
Brighton already has Vestas, which arrived in 2010 to manufacture nacelles, containing the gearboxes and drive trains for wind turbines. Vestas also built a factory in Pueblo, near the Comanche Generating Station.
CS Wind, now the owner of the Pueblo factory, this year began an expansion that will add 850 jobs. It cited Inflation Reduction Act provisions that encourage wind production.
Jeffrey Shaw, president of the Pueblo Economic Development Corporation, said he expects announcement of other renewable-sector projects in the Pueblo area and probably throughout the state during the next 12 to 18 months. “A lot of it has to do with the Inflation Reduction Act,” he said, and in particular the law’s buy-American provision.
Already, Pueblo County has been rapidly adding both solar and storage. But so far, the new tax base for Pueblo won’t balance that from Comanche. Xcel Energy, Comanche’s primary owner, has agreed to pay taxes until 2040.
Western Slope towns dependent on coal extraction and combustion are a harder sell. At Craig, there was hope on becoming a hydrogen hub, but Colorado has pinned its highest hope for federal funding on a project involving Rawhide, the coal but soon to become gas plant near Brush. Nuclear has its fans in Craig and beyond, and the Economist notes that the Biden administration is dangling billions in financial incentives nationally. That same magazine also concludes that unresolved problems cloud the future of this technology.
As for new factories, Craig is 90 miles from the nearest interstate, at the end of a railroad and five hours from DIA. It does have a workforce with skills, but so far, no new applications for those skills.
At Nucla and Naturita, which losy their small coal plant in 2019, the challenge is even greater.
Maybe Craig, Hayden, and the other towns will figure out new careers by working with the state and the utilities. But maybe not.
A few months ago, the Bureau of Land Management quietly proposed a new rule designed to “guide the balanced management of public lands,” putting conservation on a par with other uses, such as grazing, oil and gas drilling and mining. Among other things, it would allow individuals or entities to lease public parcels for conservation purposes, including habitat restoration or invasive species eradication.
To many observers, myself included, the proposal seemed unremarkable, basically a clarification of the multiple-use framework mandated by the 1976 Federal Land Policy and Management Act. Nothing about it was particularly earth-shattering or new. Environmental groups mostly supported it, albeit tepidly, though some thought that the conservation lease idea might do more harm than good. Initially, the response from the extractive industries and their enablers in Washington, D.C., was similarly subdued — with one or two exceptions.
But then, a few weeks after the new rule was unveiled, a backlash erupted for reasons I cannot fathom. It started out when Montana Republican Rep. Matt Rosedale, in a moment of rare candor, admitted that he didn’t think conservation was “supposed to be on equal footing” with extractive uses. Soon, it became a raging rhetorical inferno, with the misinformation conflagration climaxing at a U.S. House Natural Resources Committee sh*%show … er, hearing on June 15. The Republican-led committee — whose motto is “putting conservatives back into conservation” — wanted to discuss a bill that would block a rule aimed at putting conservation back into public-land management.
Republican South Dakota Gov. Kristi Noem was one of the star witnesses, despite the fact that her state contains just .12% of the lands to which the rule would apply. The rule, she said, would be “devastating” for her state, because it would create “a mechanism like a conservation lease that could be bought by third parties, not even necessarily by people in our own country, and give them access and authority over these lands. It’s dangerous.”
Noem did not explain what she meant by third parties — or first or second parties for that matter — nor why that theoretical third party would be any more dangerous than the first two. She is also apparently unaware of the fact that foreign-owned corporations are regularly given access to and authority over the nation’s public lands — including the ability to rip them apart for profit — in the form of the mining claims and coal, oil and natural gas leases that she and other Republicans enthusiastically support.
While Noem may be dismissed as merely ill-informed, the same cannot be said of her co-witness, Wyoming Gov. Mark Gordon, also a Republican. Gordon opened his testimony by declaring that he was a conservationist, which was, at least at some point, perfectly true: He once served as treasurer for the Sierra Club and wrote that oil and gas drilling had turned the once “pleasant little Western town” in which he lived into “the place that stinks on the way to Casper”. (Fun fact: He also served on the board of High Country News in the early 2000s.)
But times — and Gordon — have clearly changed: The governor then went on to deride conservation, claiming that the proposed rule would allow environmentalists to put conservation leases on active grazing allotments and force all the cattle off the land. This is blatantly false, and if Gordon had read the actual text of the rule, he surely would have known it. The draft rule may contain some ambiguity, but it is clear about one thing: It cannot “disturb existing authorizations (or) valid existing rights.” Which is to say: The new rule cannot be used to boot cows, pumpjacks, mines, wind turbines or any other existing uses off public land.
“Everything this administration does is about climate,” Gordon railed, veering away from the topic at hand, complaining that President Biden and company are “holding back the fossil fuel industry” and that “we can’t get a lease out of this administration. We can’t get a permit out of this administration.”
This is also untrue. In fact, on June 28 and 29, oil and gas companies had the opportunity to log into EnergyNet and bid on 116 oil and gas leases covering 127,000 acres of public land in Gordon’s own state, adding to the more than 7.5 million acres of leases already in effect in Wyoming. Meanwhile, the BLM has handed more than 300 drilling permits to operators in Wyoming this year alone, bringing the total of approved and available-to-drill permits in the state to nearly 2,000.
As the hearing dragged on, it became clear that the Republicans either do not understand the proposed rule or — more likely — do not want to understand it, because understanding it would force them to acknowledge that it’s not going to impede fossil fuel development or livestock operations or any other extractive development. And if they were to acknowledge that, they’d have no reason to be outraged and, therefore, no reason to exist. [ed. emphasis mine]
Republican Rep. Lauren Boebert, who represents the HCN HQ’s home district in western Colorado, grilled BLM Deputy Director Nada Wolff Culver about whether the rule would impact existing grazing, impede forest management or “lock up more land.”
“No, it will not,” Culver said, adding that the agency simply was “implementing the Federal Land Management and Policy Act.” Boebert then demanded that Culver put that in writing. Thing is, it already is written in the 22-page proposed rule published in the Federal Register nearly three months ago. Had any of these folks bothered to read it, perhaps all this brouhaha wouldn’t have been necessary.
It went on, and on, and on like this. Rep. Doug LaMalfa, R-Calif., used his time to spread climate-denial pseudoscience on carbon dioxide. Utah’s Rep. John Curtis brought out the old “absentee landlord” trope about Eastern bureaucrats making decisions that affect the West, willfully ignoring the fact that Interior Secretary Deb Haaland is a member of the Pueblo of Laguna and, as she puts it, a 35th generation New Mexican. Immediately thereafter, Rep. Pete Stauber, R-Minn., slammed the proposed BLM rule for all the restrictions it allegedly would bring. His state, Minnesota, has exactly zero acres of BLM land.
Rep. Melanie Stansbury, of New Mexico (13.5 million acres of BLM land), was born in Farmington, where her dad worked in the oil fields and her mom at the San Juan power plant. The Democrat assured her colleagues the rule would not impede fossil fuel development or grazing. “I support this rule (because) it will help us manage our lands in a more balanced way,” she said. “I find it very upsetting when I see the resources of this body of Congress … being used to put forward narratives and misinformation that … is intended to scare the American people. Much of what I’ve heard here today is just not true.”
The Interior Department has extended the public comment period on the rule until July 5. So you’ve still got a few days to weigh in.
In related news:
There are conflicting views regarding how the proposed Public Lands Rule would affect renewable energy development.
The Los Angeles Times’ Sammy Roth reported that some wind and solar industry officials worry the rule could give environmentalists and local BLM officials more tools to block future utility-scale solar or wind development. They point specifically to a provision that would extend rangeland health standards to all public lands and to another that would make it easier for agency offices to establish areas of critical environmental concern, or ACECs.
But Wolff Culver told Roth that neither provision is likely to hamper renewable energy projects. ACECs are already widely used by the agency; the new rule would merely consolidate, clarify and codify the procedure for establishing them. As for the rangeland health standards? The agency has never done a decent job of enforcing these standards for livestock operators, so why would it suddenly start using them to block solar projects?
The Center for American Progress said the new rule would actually encourage clean energy development. The proposed conservation leases, Drew McConville wrote, provide a potential framework for developers to do “compensatory mitigation,” or offset the impacts of a solar or wind facility by doing restoration work on another parcel of public land.
Meanwhile, the Biden administration is pulling out all the stops to facilitate clean energy development in other ways:
Haaland traveled to Rawlins, Wyoming, last week to help celebrate the groundbreaking of the TransWest Express transmission project. The high-voltage line will carry wind power from the massive Chokecherry and Sierra Madre wind projects outside Rawlins westward to the California grid. Permitting for the project took 15 years.
The BLM proposed yet another rule, this one aiming to promote utility-scale solar and wind development on public land by reducing rents and fees significantly and streamlining right-of-way permitting.
In May, the Biden administration announced that it would expedite the review of the proposed revival and expansion of the Hermosa manganese and zinc mine in southern Arizona. The Australian owner of the mine said it is needed to meet growing demand for electric vehicle battery materials.
But one place will remain off-limits to “green metal” mining: An ancient dry lakebed in Nevada. The Associated Press reported that mining companies had targeted the site for its abundant lithium, which is used in batteries for EVs, energy storage and other applications. But it turns out the site is even more valuable to NASA, and for a very different purpose: satellite calibration. And so the BLM withdrew the 36-square-mile site from mineral exploration. The agency has not extended the same courtesy to the tribal nations seeking to block the Thacker Pass lithium mine from destroying a sacred site.
A tower, pictured June 23, 2022 supports high-voltage transmission lines as part of PacifiCorp’s new Gateway West transmission project in Carbon County. Construction will soon begin on the TransWest Express transmission project nearby to carry Wyoming wind energy to the Southwest. (Dustin Bleizeffer/WyoFile)
After 15 years of planning and permitting, construction will begin this year on the TransWest Express high-voltage transmission line — a milestone expansion of Wyoming’s electric power export industry to markets in the American Southwest and one of the largest transmission upgrades to the western grid in decades.
The Bureau of Land Management granted TransWest Express LLC a “notice to proceed” in April, culminating years of work and millions of dollars invested in a “vision” to bring Wyoming’s renewable energy potential to the rest of the West, according to company officials.
“It’s a day that’s been long coming,” TransWest Express Executive Vice President and COO Roxane Perruso said. A groundbreaking event will take place Tuesday, she said, with a special appreciation for the Carbon County community’s integral support. That support represented a leap-of-faith for a region with its cultural and economic roots in coal.
Power project
While TransWest Express LLC was mired in planning and a painstaking bureaucratic permitting process that included obtaining rights-of-way from hundreds of entities across the 732-mile route, its affiliate Power Company of Wyoming was already doing preliminary construction work on the wind farm that will energize the line. The Anschutz Corporation owns both companies.
The Chokecherry and Sierra Madre wind energy project will span some 320,000 acres in Carbon County and generate 3,000 megawatts of electricity — representing about 28% of Wyoming’s current electrical generation capacity today, according to U.S. Energy Information data. It will be the largest onshore wind energy facility in North America, according to Power Company of Wyoming.
This map depicts the route of the TransWest Express transmission line connecting Wyoming wind energy to the Southwest. (TransWest Express)
Phased construction of the 732-mile TransWest Express high voltage transmission system will begin later this year, according to company officials. The first phase includes a new substation in Carbon County. From there, crews will erect towers and string high-voltage lines to a station in Delta, Utah. That portion of the project will initially begin moving up to 1,500 megawatts of wind-generated electricity via direct current by December 2027.
The second phase includes an alternate current line to connect with other powerline systems in southern Nevada. By the end of 2028, the final phases of the system will ramp up to 3,000 megawatts and four system interconnections in the Southwest, according to TransWest Express officials.
“These components will provide important new bulk transmission capacity and connectivity with the PacifiCorp system in Wyoming, with the Los Angeles Department of Water & Power and Intermountain Power systems in Utah, with the NV Energy system in Nevada and with the California Independent System Operator,” Perruso said.
New dynamic
Aside from transporting power from Wyoming’s Chokecherry and Sierra Madre wind facility, TransWest may also serve as an onramp for other energy projects, such as the hydrogen energy proposal at the Intermountain Power Project in Utah, and potentially new nuclear power facilities, according to TransWest officials.
“As Wyoming looks at more carbon-free [energy] resources, we are going to be that pathway that allows those resources to get to the market,” Perruso said. “We’re opening up the new market for renewables and also creating a pathway for future carbon-free resources.”
Crews work on road and wind turbine pad construction June 23, 2022 at the future site of the Chokecherry and Sierra Madre wind energy project in Carbon County. (Dustin Bleizeffer/WyoFile)
Some clean energy and climate advocates hail the TransWest Express project as a vital step forward in “decarbonizing” the western grid. Once completed, the transmission line will serve as a “backbone,” increasing connectivity between large demand centers — southern Nevada, Utah and southern California — and rural areas that can generate commercial-scale renewable energy, such as Wyoming’s abundant capacity for wind power generation.
“This is an example of infrastructure that is needed and should be built,” Western Resource Advocates Deputy Director of Regional Markets Vijay Satyal said. “It is definitely very important for the West.”
Together, the TransWest line and CCSM wind facility represent a new dynamic — as well as a gamble that too few entities have been willing or able to take on, according to Satyal and other utility market watchers. It’s a rare move that requires a lot of patience with the permitting process, according to one TransWest Express official, as well as deep pockets, according to others.
Going independent
Most consumers don’t get to choose their electricity provider, whether they’re powering a home in Casper or a chain restaurant in Evanston, but the TransWest project diverges from that paradigm. For example, PacifiCorp, which also operates as Rocky Mountain Power, is one of several electric utility monopolies in Wyoming. It serves captive customers in certain areas because, generally speaking, it owns the power infrastructure exclusively.
As a monopoly, PacifiCorp is regulated by the Wyoming Public Service Commission, as well as service commissions in the five other states it operates. It is required to justify and win approval for its electricity rates. In return, it has a guaranteed, captive ratepayer base to finance system operations and necessary upgrades.
Just southeast of the Jim Bridger Plant in August 2019, PacifiCorp workers erect towers that will carry new transmission lines, predominantly for wind energy, to tie into the regional electrical grid where it leaves the plant. (Andrew Graham/WyoFile)
There are variations, such as rural electric co-ops that work under different sets of rules and authorities. But the same geographically limited market for grid infrastructure plays out all over Wyoming, the West and the nation. Although utilities like PacifiCorp are shifting from burning coal to cleaner forms of electric generation within their own service territories, Satyal said, it isn’t enough to achieve the level of connectivity between hundreds of individual service systems to allow for new sources of renewable and low-carbon energy.
The strategy behind Power Company of Wyoming and TransWest Express is to operate as independent merchants, selling and delivering renewable and low-carbon energy to any utility it can reach via the three major operating regions that TransWest will connect to on the western grid.
“We’re broadening the [Wyoming and western] market to include these new interconnections and new customers,” Perruso said. “We’re not constrained by a service territory.
“That also means it’s risky,” Perruso continued. “This is why you don’t see [a lot of] developers doing this, because it’s a risky and an entrepreneurial proposition.”
Big gamble, deep pockets
Unlike a regulated utility, neither TransWest Express LLC nor Power Company of Wyoming have a captive ratepayer base to leverage upfront financing or a guaranteed paying customer base for ongoing operations. That’s where both the gamble and the deep pockets come in.
Both companies are affiliates of the Denver-based Anschutz Corporation. The worldwide oil, investment, sports, real estate, entertainment and publishing company headed by Philip Anschutz is worth some $10.8 billion, according to Forbes.
“Thanks to the deep pockets or the financial muscle the owners had, they survived a long [permitting] process to comply with all the environmental requirements,” Satyal said. “This is a good example of a company seeing the value proposition and the economic benefits of exporting Wyoming-rich wind and moving into the decarbonization of the future.”
A truck hauls a wind turbine blade through Medicine Bow in July 2020. (Dustin Bleizeffer/WyoFile)
TransWest Express doesn’t yet have customers contracted to take the power it plans to deliver from Wyoming. But, Satyal said, the rush to renewables to meet self-imposed carbon emission standards — particularly in the Southwest — is a good bet with a potentially lucrative payoff.
“God forbid California has a reliability crisis. This line will be a very important lifeline in providing energy — and at high [profit],” he said. “That’s competition at work, which I think is what Wyoming wants to support — a competitive market.”
Wyoming Energy Authority Executive Director Rob Creager agrees.
“Our state is in the business of producing and selling world-class energy,” Creager said. “So projects like TransWest Express opening up entirely new consumer markets for our energy products have tremendous potential for Wyoming.”
Dustin Bleizeffer is a Report for America Corps member covering energy and climate at WyoFile. He has worked as a coal miner, an oilfield mechanic, and for 25 years as a statewide reporter and editor primarily… More by Dustin Bleizeffer
Mauna Loa is WMO Global Atmosphere Watch benchmark station and monitors rising CO2 levels Week of 23 April 2023: 424.40 parts per million Weekly value one year ago: 420.19 ppm Weekly value 10 years ago: 399.32 ppm 📷 http://CO2.Earthhttps://co2.earth/daily-co2. Credit: World Meteorological Organization
As part of a deal struck by President Biden and House Speaker Kevin McCarthy to suspend the nation’s debt ceiling — and avoid an economically devastating default — federal officials would issue permits for the Mountain Valley Pipeline, which is designed to carry planet-warming natural gas from West Virginia. The pipeline would worsen the climate crisis. But it’s a top priority for West Virginia Sen. Joe Manchin III, a conservative Democrat without whom the party would lose control of the Senate…
The bill would set a two-year deadline for federal agencies reviewing energy projects to issue environmental reports, and set a page limit on those reports (150 pages, or 300 for “extraordinarily complex” projects). It would allow energy companies to hire a third-party consultant to write those reports, rather than having a slow-moving federal agency take responsibility. Other changes would make battery-storage facilities eligible for quicker approval under the Obama-era FAST Act, and help federal agencies avoid duplicative environmental analyses of energy technologies that other agencies have already studied…
But it’s a double-edged sword. Most of those provisions could also be used to speed up permitting for fossil fuel infrastructure, such as pipelines, power plants and export terminals. Other provisions could limit the number of coal, oil and gas projects subject to federal scrutiny under the National Environmental Policy Act, conservationists say — and in the process harm the Black, Latino and low-income communities that have long suffered the injustice of fossil-fueled air and water pollution.
The National Environmental Policy Act “is one of the most powerful tools that environmental justice communities have on the books,” said Jean Su, a Washington, D.C.-based attorney with the nonprofit Center for Biological Diversity. “If we keep making these exemptions … then we’re undercutting the whole point of the [law], which is to give voice to these environmental justice communities and the public to weigh in on how projects will affect them.”
[…]
Scientists say the United States must dramatically pick up the pace of building solar farms, wind turbines, batteries and electric power lines to have any hope of avoiding the worst consequences of global warming. Those consequences include deadlier heat waves, harsher droughts, more powerful storms, larger wildfires and more destructive coastal flooding. But across the country, local opposition has made it increasingly difficult to build clean energy. Conservationists, rural residents and Native American tribes are pushing back against projects they say would destroy wildlife habitat, spoil beautiful views and desecrate sacred sites. A report released Wednesday by Columbia Law School found that local governments across 35 states have implemented 228 ordinances blocking or restricting renewable energy facilities.
On Tuesday [May 2, 2023], New York lawmakers passed a law that, for the first time, authorizes the New York Power Authority — the largest state public power authority in the U.S. — to build renewable energy projects to help reach the state’s climate goals.
The new Build Public Renewables Act, passed as part of New York’s annual budget, is a culmination of four years of organizing by climate and community organizations, and has been heralded as a major win by energy democracy, environmental justice, and labor groups.
“This will enable us to build renewable energy projects with gold-standard labor language, ensuring that the transition to renewable energy benefits working people and their families,” Patrick Robbins, an organizer with the grassroots Public Power NY Coalition, told Grist.
The new law directs the New York Power Authority to plan, construct, and operate renewable energy projects in service of the state’s renewable energy goals. Under New York’s 2019 Climate Leadership and Community Protection Act, the state aims to generate 70 percent of its electricity from renewables and cut overall greenhouse gas emissions by 40 percent by 2030.
The Build Public Renewables Act includes several provisions to prioritize clean energy access for low- and middle-income customers, organized labor, and a just transition for workers displaced from fossil fuel projects. It requires the New York Power Authority to establish a program allowing low- and moderate-income electricity customers in disadvantaged communities to receive credits on their monthly utility bills for any renewable energy produced by the power authority.
The new law also stipulates that workers or contractors hired for these new renewable energy projects must be protected by a collective bargaining agreement. And it instructs the public power authority to enter into a memorandum of understanding with labor unions to uphold and protect pay rates, training, and safety standards for workers supporting the operation and maintenance of such projects. Candidates who have lost employment in the oil and gas sector will be prioritized for those positions. Beginning in 2024, the authority will also be authorized to allocate up to $25 million each year toward worker-training programs for the renewable energy sector.
Activists applaud a provision to phase out so-called peaker power plants owned by the New York Power Authority by 2030 and replace them with renewable energy systems. These small natural gas power plants quickly start and stop during times of peak energy demand, typically in the summer, when air-conditioning use ramps up. They are also a major source of pollution and sickness for nearby communities.
In a 2021 report, a coalition of state environmental justice groups found that 78 percent of residents living within one mile of the plants are either low income or people of color. The report also found that peaker plants contribute up to 94 percent of New York’s nitrogen oxide pollution, a key component of smog, on high-ozone days.
The law had been introduced — and failed to pass — the last two consecutive years before finally passing this year. New York state Assembly Member Sarahana Shrestha, elected this past November, was a key force in pushing the legislation through the state assembly. Before serving in the assembly, she was an organizer with the Public Power NY Coalition and the New York chapter of the Democratic Socialists of America, helping to rally around the Build Public Renewables Act. She ran on a climate campaignaligned with the public power movement, which aims to shift energy utilities from the traditional investor-owned, private model to public ownership and democratic governance.
To Shrestha, the new law addresses “fundamental questions like who should own energy, who should serve energy, at what cost, and what kind of energy should we be making, and who should be deciding those things.”
The bill prevailed despite opposition from groups including the Independent Power Producers of New York, a trade association of energy companies working in renewables and fossil fuels, and the Alliance for Clean Energy New York, a coalition of renewable energy businesses.
In a joint letter to New York Governor Kathy Hochul, the two organizations and four other groups stated that having the public power authority build renewables “does not create a level playing field with the private sector.” They also raised concerns that the law does not address ongoing barriers to clean energy development in New York, such as delays in connecting to transmission systems and permitting.
Proponents of the law argue that industry resistance was outweighed by broad support from community-based organizations, environmental justice groups, and unions representing more than 1 million workers in New York.
Another factor in the law’s successful passage was last year’s Inflation Reduction Act, President Joe Biden’s landmark climate spending legislation. The federal law provides newly expanded tax credits for renewables and makes them available to tax-exempt public power entities like the New York Power Authority.
Shrestha and other advocates hope that the new Build Public Renewables Act will inspire similar legislation in other states — and they’re already seeing local Democratic Socialists of America chapters and other advocacy groups reach out.
“The reason I am excited about this win is not because our work is done, but now it means we can start our work,” Shrestha said.
Mountain of the Holy Cross
Creator: Jackson, William Henry, 1843-1942. View of Mount of the Holy Cross in the Sawatch Range, Eagle County, Colorado. Shows snow on a mountain peak, rocky ridges and talus. Date: 1892? Credit: Denver Public Library Digital Collections
Click the link to read the article on the Big Pivots website (Allen Best):
Glenwood Springs-based cooperative says it can leap from 50% emission-free energy to 92% by next year—despite owning a coal plant. Exactly how do this work? Is it a model for others?
Let’s start with the obvious. The sun doesn’t always shine and, except for springtime in Colorado, the wind doesn’t always blow.
So how can Holy Cross Energy, which serves the Vail, Aspen, and Rifle areas, achieve 92% emission-free energy in 2024? Last year it was 50%.
And if Holy Cross can do it, what is possible for utilities serving Crested Butte and Steamboat Springs, Holyoke and Crestone, Sterling and Pueblo?
By the way, Holy Cross still owns 8% of Colorado’s newest coal plant, Comanche 3.
Directors of Holy Cross several years ago adopted what seemed like the audacious goal of achieving 100% emissions-free power by 2030. Municipal utilities serving Aspen and Glenwood springs already have 100% renewables, but do not own their own generation.
I expected small steps. Wind and solar have become far less expensive than coal or gas. But what windless, sunless days?
Resource adequacy has become a major question in this energy transition. Coal plants, if sometimes down, are far more reliable than wind and sunshine. Now we’re hurriedly closing those high-priced and polluting plants. Natural gas can respond quickly to demand. However, those plants are costly and pollute, too.
Do we need more natural gas plants?
Colorado’s two largest electrical providers, Xcel Energy and Tri-State Generation and Transmission, both say they can reduce carbon emissions 80% carbon by 2030 as compared to 2005 levels. But both have refrained from embracing higher, short-term goals.
Tri-State, which delivers power to 17 of the state’s 22 electrical cooperatives, warns of ambitions outpacing realities. Duane Highley, the chief executive, likens resource adequacy to a “big bad wolf.” The Western Energy Coordinating Council in December warned that Western states risked having insufficient resources by 2025 to meet electric demand on the grid they share.
Storage will be crucial. Lithium-ion batteries, if increasingly more affordable, can store electricity for just a few hours. We need technologies that can store energy for days if not weeks. Xcel Energy will be testing one such long-term technology, called iron-air, at Pueblo. Colorado wants to be part of the elusive answer to hydrogen, perhaps using existing electricity infrastructure at Brush or Craig. And transmission and other new infrastructure, such that could allow Colorado to exploit the winds of Kansas or the sunshine of Arizona, can help—but remains unbuilt.
Holy Cross actually has the second lowest electrical rates among Colorado’s 22 electrical cooperatives. And its rates are 5% less than those of Xcel. This is not Gucci electricity, a Tesla Model X Plaid. The Aspen Skiing Co. and Vail Resorts make snow with some of Colorado’s lowest electricity rates.
Holy Cross Energy owned 8% of Comanche 3 when the coal-burning unit at Pueblo began operations in 2010, when this photo was taken, and it still does. It has assigned output of the power to Guzman Energy. Photo/Allen Best
Bryan Hannegan, the chief executive and head wizard at Holy Cross, laid out his utility’s broad strategy in recent presentations to both state legislators and the Avon Town Council. Holy Cross, he explained, will add new wind from eastern Colorado and several new solar-plus-storage projects within its service territory.
The cooperative also intends to integrate new storage in homes and businesses. It incentivizes home batteries that can be tapped as needed to meet demand from neighborhoods. Holy Cross also wants to integrate vehicle batteries, such as from electric school buses, in its efforts to match demands with supplies. Time-of-use rates will be crucial. This market mechanism aims to shift demands to when renewable electricity is most readily available — and cheapest.
Importantly, Holy Cross expects to achieve this high mark without need of new natural gas capacity. Many environmentalists loathe the idea of new and rarely used – but always expensive – natural gas plants. Most utilities see even more gas generation as necessary.
Speaking to the Avon council, Hannegan expressed confidence Holy Cross can meet growing demand from electric vehicles, heat pumps, and other uses. He called it “smart electrification.”
Holy Cross’s journey from 92% to 100%, though, will “be a bit of a doozie,” he said. He likened it to the climb from Camp 4 on Everest to the peak.
“We have to think about how we balance (supply and demand) at every location on our grid at every moment of every day,” he said. That “fine-grained balancing” will be “quite an engineering challenge. There is reason we have given ourselves six years” to figure this out.
What about that coal plant that Holy Cross still owns? Does that muck up the math? Can Holy Cross truly claim 92% ? And what prevents other utilities from following in its footsteps? These are questions I will ask Holy Cross and others in coming weeks.
Wyoming’s largest utility will either retire or convert #coal-fired units to natural (#methane) gas, sparing only two coal-burning units in the state beyond 2030
Wyoming coal will play a shrinking role in PacifiCorp’s energy supply portfolio as the utility adds more wind and solar power and either retires or converts its coal-fired power units in the state to natural gas.
Only two of the utility’s 11 coal-fired power units currently operating in the state will continue burning coal beyond 2030 — Wyodak near Gillette and Unit 4 at the Dave Johnston plant in Glenrock — according to the utility’s biennial Integrated Resource Plan filed on Friday. Several coal units will be spared from earlier decommissioning plans and instead be converted to natural gas — Jim Bridger units 3 and 4 in 2030 and Naughton units 1 and 2 in 2026.
Dave Johnston Unit 3 will be retired in 2027, and units 1 and 2 will be retired in 2028 rather than 2027.
All told, PacifiCorp will cut its coal-fired power generation capacity across its six-state operating region by 1,153 megawatts by 2026 and 3,000 megawatts by 2032, and replace it with wind and solar energy, battery storage, nuclear power, wholesale power purchases and energy efficiencies, according to the company, which operates as Rocky Mountain Power in Wyoming.
PacifiCorp plans a major shift from coal to solar, wind, nuclear and battery storage. (PacifiCorp)
“Our Integrated Resource Plan is designed to determine the lowest-cost options for customers, adjusting for risks, future customer needs, system reliability, market projections and changing technology,” said Rick Link, who serves as PacifiCorp senior vice president of resource planning, procurement and optimization.
No carbon capture for coal
One option that doesn’t fit those parameters is retrofitting decades-old coal-fired power units with carbon capture, use and sequestration technologies. PacifiCorp also filed a mandatory report to the Wyoming Public Service Commission Friday to update officials on its call for bidders to possibly install CCUS facilities at its coal units in the state — an action mandated by Wyoming law.
“Through 2042, the [analysis] for all CCUS variants result in higher costs than the preferred portfolio,” PacifiCorp said in its 48-page report. The summary suggests it will cost Wyoming ratepayers “$514 million [to retrofit] Dave Johnston Unit 2, $857 million for Dave Johnston Unit 4, and $1.3 billion for Jim Bridger units 3 and 4.”
Of the 54 companies that PacifiCorp sought bids from, only 21 qualified and only three participated in mandatory site visits, PacifiCorp said. The bidding and analysis also confirmed that adding CCUS to an existing coal-fired power unit drastically reduces a facility’s generation capacity, which would require replacing that lost capacity.
PacifiCorp is still working with vendors to explore the potential for taking on CCUS retrofits, however.
Three of four coal-burning units at PacifiCorp’s Dave Johnston coal-fired power plant near Glenrock will be decommissioned by 2028, according to the utility’s 2023 Integrated Resource Plan. (Dustin Bleizeffer/WyoFile)
“The company has determined that Dave Johnston Unit 4 and Jim Bridger units 3 and 4 remain potentially suitable candidates for CCUS and are being further analyzed under the company’s RFP process approved by the [Wyoming Public Service Commission] in the initial application,” PacifiCorp said in its report.
CCUS retrofits remain a significant cost and power-delivery-reliability risk for Wyoming ratepayers, Powder River Basin Resource Council Chairman David Romtvedt said.
“Ratepayers should not be asked to cover the costs of uneconomical energy projects,” Romtvedt said in a prepared statement. “Instead, we support the addition of cost effective and environmentally responsible renewable energy sources to the company’s overall energy profile.”
Renewable shift and potential nuclear
PacifiCorp’s updated Integrated Resource Plan, which looks ahead 20 years, includes quadrupling its wind and solar resources to 20,000 megawatts by 2032, backed with an additional 7,400 megawatts of energy storage.
The utility still envisions taking ownership of TerraPower’s Natrium nuclear energy facility at Kemmerer — which is expected to begin operating in 2030 — and possibly taking on two more small modular reactors co-located at coal plants in Utah.
Utility giant PacifiCorp hopes to achieve net-zero greenhouse gas emissions by 2050. (PacifiCorp)
The expansion of renewable and low-carbon electric generation facilities is accompanied by approximately 2,500 miles of new transmission lines, many of which will connect Wyoming renewable sources to PacifiCorp service territories in the West. All told, the power shift and transmission buildout should result “in a system-wide 70% reduction of greenhouse gas emissions from 2005 levels by 2030, an 87% reduction by 2035 and a 100% reduction by 2050,” PacifiCorp reported.
Paramount to those greenhouse gas emission savings is curbing the utility’s reliance on coal.
“Driven in part by ongoing cost pressures on existing coal-fired facilities and dropping costs for new resource alternatives, of the 22 coal units currently serving PacifiCorp customers, the preferred portfolio includes retirement or gas conversion of 13 units by 2030 and 20 units by year-end 2032,” PacifiCorp said.
Though it remains to be seen how PacifiCorp’s shift away from coal and toward a lower-carbon energy portfolio will affect jobs and revenue in the state, the company’s plan acknowledges a larger energy industry shift and opportunities for the state, according to Romtvedt.
“Greater use of renewable energy will help us to ease the dislocation caused by the transition away from extractive resources while developing a more sustainable energy future that can support stable economies in our communities,” he said.
Delegates at the IPCC meeting in Interlaken, Switzerland, on 18 March 2023. Credit: IISD
Click the link to read the article on the Carbon Brief website (Aruna Chandra, Daisy Dunne, Orla Dwyer, Simon Evans, Robert McSweeney, Ayesha Tandon, and Giuliana Viglione)
The final part of the world’s most comprehensive assessment of climate change – which details the “unequivocal” role of humans, its impacts on “every region” of the world and what must be done to solve it – has now been published in full by the UN’s Intergovernmental Panel on Climate Change (IPCC).
The synthesis report is the last in the IPCC’s sixth assessment cycle, which has involved 700 scientists in 91 countries. Overall, the full cycle of reports has taken eight years to complete.
The report sets out in the clearest and most evidenced detail yet how humans are responsible for the 1.1C of temperature rise seen since the start of the industrial era.
It also shows how the impacts of this level of warming are already deadly and disproportionately heaped upon the world’s most vulnerable people.
The report notes that policies in place by the end of 2021 – the cut-off date for evidence cited in the assessment – would likely see temperatures exceed 1.5C this century and reach around 3.2C by 2100.
In many parts of the world, humans and ecosystems will be unable to adapt to this amount of warming, it says. And the losses and damages will “escalate with every increment” of global temperature rise.
But it also lays out how governments can still take action to avoid the worst of climate change, with the rest of this decade being crucial for deciding impacts for the rest of the century. The report says:
“There is a rapidly closing window of opportunity to secure a liveable and sustainable future for all…The choices and actions implemented in this decade will have impacts now and for thousands of years.”
The report shows that many options for tackling climate change – from wind and solar power to tackling food waste and greening cities – are already cost effective, enjoy public support and would come with co-benefits for human health and nature.
At a press briefing, leading climate scientist and IPCC author Prof Friederike Otto said the report highlights “not only the urgency of the problem and the gravity of it, but also lots of reasons for hope – because we still have the time to act and we have everything we need”.
Carbon Brief’s team of journalists has delved through each page of the IPCC’s AR6 full synthesis report to produce a digestible summary of the key findings and graphics.
The synthesis report is the final part of the IPCC’s sixth assessment cycle. It “integrates” the main findings of the three working group reports, which have been published over the last 18 months or so:
As the “mandate” was to produce a synthesis of existing material, “there is nothing that is in there that is not in the underlying reports”, author Prof Fredi Otto – a senior lecturer at the Grantham Institute for Climate Change and the Environment at Imperial College London – told a press briefing. This means that the report does not include any research or emissions pledges issued after the cut-off date for the WG3 assessment – which was 11 October 2021, several weeks before the COP26 climate summit in Glasgow.
The synthesis report is much shorter than the full assessment reports. The combined length of the “summary for policymakers” (SPM) – a short, non-technical synopsis – and the underlying report clocks in at 122 pages. This is longer than the 42.5 pages that were planned (pdf), but a fraction of the assessment reports that can top 3,000 pages. As with the assessment reports, the synthesis report has been through several rounds of review by experts and governments.
The report’s SPM was signed off via a line-by-line approval session involving authors and government delegates last week in Switzerland.
However, unlike the assessment reports, the session also approved the underlying full report “section by section”. It was also the IPCC’s first approval session since the Covid-19 pandemic that was held in person.
The approval process was scheduled to be completed on Friday 17 March, but overran – despite multiple “night sessions” and “round-the-clock deliberations”. The SPM was finally approved on the morning of Sunday 19 March in a “sparsely attended room”, as many developing country delegates had already left the venue, Third World Network reported. “People who have to contribute have left the meeting,” said India’s representatives in the early hours before the closing plenary.
Once the SPM was approved, there was then a “huge moment of panic” around whether “it would at all be possible to do the approval of the long report”, Otto said:
“We all almost died of adrenaline poisoning during [Sunday], but then it was approved quite straightforwardly.”
(The Earth Negotiations Bulletin has published a summary of the discussions during the approval session. This is referenced frequently in this article.)
The synthesis report shares the IPCC’s “calibrated language” that the assessment reports use to communicate levels of certainty behind the statements it includes.
The findings are given “as statements of fact or associated with an assessed level of confidence”, based on scientific understanding. The language indicates the “underlying evidence and agreement”, the report explains:
“A level of confidence is expressed using five qualifiers: very low, low, medium, high and very high, and typeset in italics, for example, medium confidence.
“The following terms have been used to indicate the assessed likelihood of an outcome or result: virtually certain 99-100% probability; very likely 90-100%; likely 66-100%; more likely than not >50-100%; about as likely as not 33-66%; unlikely 0-33%; very unlikely 0—10%; and exceptionally unlikely 0-1%. Additional terms (extremely likely 95-100%; more likely than not >50-100%; and extremely unlikely 0-5%) are also used when appropriate.”
The synthesis includes projections based on the latest generation of global climate models, produced as part of the sixth Coupled Model Intercomparison Project (CMIP6) for the AR6 cycle. However, it also brings together different approaches for how future pathways were considered in the assessment reports.
The WG1 report “assessed the climate response to five illustrative scenarios based on Shared Socioeconomic Pathways (SSPs) that cover the range of possible future development of anthropogenic drivers of climate change found in the literature”, the synthesis explains:
“The high and very high GHG emissions scenarios (SSP3-7.0 and SSP5-8.5) have CO2 emissions that roughly double from current levels by 2100 and 2050, respectively. The intermediate GHG emissions scenario (SSP2-4.5) has CO2 emissions remaining around current levels until the middle of the century. The very low and low GHG emissions scenarios (SSP1-1.9 and SSP1-2.6) have CO2 emissions declining to net-zero around 2050 and 2070, respectively, followed by varying levels of net-negative CO2 emissions.”
In contrast, the WG3 report assessed “a large number of global modelled emissions pathways…of which 1,202 pathways were categorised based on their projected global warming over the 21st century, with categories ranging from pathways that limit warming to 1.5C with more than 50% likelihood with no or limited overshoot (C1) to pathways that exceed 4C (C8)”.
The table below, taken from the synthesis report, shows how these pathways relate to the SSPs and their predecessors, the Representative Concentration Pathways (RCPs).
Description and relationship of scenarios and modelled pathways considered across AR6 working group reports. Source: IPCC (2023) Box SPM.1, Table 1
The synthesis report is the final product of the IPCC’s sixth assessment cycle. Its delay from the planned publication in September last year for “management reasons” – and the lack of transparency surrounding these issues – resulted in “unusually blunt statements of discontent from governments” about the IPCC’s impact and credibility, the Earth Negotiations Bulletin reported at the time.
Nonetheless, governments agreed at a September meeting that the IPCC’s seventh assessment cycle (AR7) will begin in July this year and will have a length of between five and seven years. The end of AR6 and the start of AR7 will see the election of a new IPCC leadership team – including chair, vice-chairs and working group co-chairs. The first full assessment reports of AR7 would likely not be expected until 2027 or 2028.
The SPM says with high confidence that human activities have “unequivocally caused global warming”.
2. How is the Earth’s climate changing?
This statement – first made in the IPCC’s WG1 report – is the strongest wording to date about the role of human activities on observed warming from any IPCC assessment cycle.
Overall, the report says that global surface temperature in 2011-20 averaged at 1.09C above 1850-1900 levels – with a 1.59C rise seen over land and a 0.88C rise over the ocean. It adds, with high confidence, that “global surface temperature has increased faster since 1970 than in any other 50-year period over at least the last 2000 years”.
According to the Earth Negotiations Bulletin, delegates “disagreed on how much information to include” in the SPM sub-paragraph on global surface temperature increases. The bulletin outlines the lengthy discussion needed to finalise this section of the text – including decisions on whether to use the “more precise” 1.09C or the rounded 1.1C figure and warnings that the addition of extra sentences “overloaded the sub-paragraph with numbers and diluted the message”.
The SPM also discusses the observed changes and impacts of climate change to date. It makes the following statement with high confidence:
“Widespread and rapid changes in the atmosphere, ocean, cryosphere and biosphere have occurred. Human-caused climate change is already affecting many weather and climate extremes in every region across the globe. This has led to widespread adverse impacts and related losses and damages to nature and people.”
It says that global average sea levels increased by 0.2 metres between 1901 and 2018. Sea level rise accelerated over this time, from a rate of 1.3mm per year over 1901-71 to 2.7mm per year over 2006-18, it adds.
The SPM for the AR6 synthesis report is longer than its AR5 counterpart (pdf) and contains more numbers in its section on observed changes in the climate system.
For example, the AR5 report does not quantify the rate of acceleration of sea level rise, instead saying that “the rate of sea level rise since the mid-19th century has been larger than the mean rate during the previous two millennia (high confidence)”.
Meanwhile, the SPM says human influence has likely increased the chance of “compound” extreme events since the 1950s, including increases in the frequency of concurrent heatwaves and droughts.
The SPM has very high confidence that “increases in extreme heat events have resulted in human mortality and morbidity” in all regions. It adds that extreme temperatures also cause mental health challenges, trauma and the loss of livelihoods and culture. The report also has high confidence that climate change is “contributing to humanitarian crises where climate hazards interact with high vulnerability”.
India in 2022 faced a prolonged heatwave, with temperatures exceeding 42°C in numerous cities across the country. This came just weeks after India recorded its hottest March since the country’s meteorological department began its records over 120 years ago. This image, produced using data from the Copernicus Sentinel-3 mission, shows the land surface temperature across most of the nation. According to the India Meteorological Department, maximum air temperatures reached 43-46°C over most parts of Rajasthan, Vidarbha, Madhya Pradesh and East Uttar Pradesh; in many parts over Gujarat, interior Odisha; and in some parts of Madhya Maharashtra on 28 April. Forecasters warned that heatwave conditions are expected to continue until 2 May. Experts at the Indian Institute of Technology’s Water and Climate Lab stated that, in recent years, the number of Indian states hit by heatwaves has increased, as extreme temperatures become more frequent. Owing to the absence of cloud cover on 29 April (10:30 local time), the Sentinel-3 mission was able to obtain an accurate measurement of the land surface temperature of the ground, which exceeded 60°C in several areas. The data shows that surface temperature in Jaipur and Ahmedabad reached 47°C, while the hottest temperatures recorded are southeast and southwest of Ahmedabad (visible in deep red) with maximum land surface temperatures of around 65°C. The map was generated by using the mission’s Sea and Land Surface Temperature Radiometer instrument. While weather forecasts use predicted air temperatures, this satellite instrument measures the real amount of energy radiating from Earth. Therefore, the map shows the actual temperature of the land’s surface pictured here, which is usually significantly hotter than air temperatures. Sentinel-3 can monitor wildfires, map the way the land is used, provide indices of vegetation state, as well as measure the temperature, colour and height of the sea surface. For more information on the Copernicus Sentinel-3 mission, click here. By Contains modified Copernicus Sentinel data 2022, Attribution, https://commons.wikimedia.org/w/index.php?curid=117497147
Elsewhere, the report has high confidence that animal and human diseases including zoonoses – infections that pass between animals and people – “are emerging in new areas” and very high confidence that “the occurrence of climate-related food-borne and water-borne diseases has increased”.
The SPM warns that climate and weather extremes are “increasingly driving displacement in Africa, Asia, North America (high confidence), and Central and South America (medium confidence), with small island states in the Caribbean and South Pacific being disproportionately affected relative to their small population size(high confidence)”.
The authors write that hot extremes have intensified in cities and that they have high confidence that the observed adverse impacts are “concentrated amongst economically and socially marginalised urban residents”.
The report elaborates, saying it has high confidence that “urban infrastructure including transportation, water, sanitation and energy systems have been compromised by extreme and slow-onset events, with resulting economic losses, disruptions of services and impacts to well-being”.
The table below shows observed changes in the climate and their attribution to human influence. Darker colours indicate a higher confidence in the changes and their human influence. Notably, the table lists “warming of the global climate system since pre-industrial times” as a “fact”.
Observed changes in the climate and their attribution to human influence. Darker colours indicate a higher confidence in the findings. Source: IPCC (2023) Table 2.1
The report has high confidence that climate change has hindered efforts to meet the Sustainable Development Goals by reducing food security, changing rainfall patterns, melting bodies of ice such as glaciers and driving more intense and frequent extreme weather events.
For example, the report says that “increasing weather and climate extreme events have exposed millions of people to acute food insecurity and reduced water security”. (For more on how climate change is affecting extreme weather, see Carbon Brief’s coverage of the IPCC’s WG1 report.)
The report also says that “substantial damages, and increasingly irreversible losses” have already been sustained. For example, it has very high confidence that approximately half of the species assessed globally have shifted polewards or to higher elevations. It has medium confidence that impacts on some ecosystems are “approaching irreversibility” – for example the impacts of hydrological changes resulting from glacial retreat.
The report also has high confidence that “economic impacts attributable to climate change are increasingly affecting peoples’ livelihoods and are causing economic and societal impacts across national boundaries”.
3. How are human-caused emissions driving global warming?
The report states as fact – that is, with no calibrated language – that “human activities, principally through emissions of greenhouse gases, have unequivocally caused global warming”.
In other words, the report states, “human-caused climate change is a consequence of more than a century of net GHG emissions from energy use, land-use and land use change, lifestyle and patterns of consumption, and production”.
Specifically, the report explains that humans have contributed to 1.07C of the observed warming between 1850-1900 and 2010-19, with a likely range of 0.8-1.3C. As the total observed warming over the same period is 1.06C, this means that humans have caused 100% of the long-term global warming to date.
This conclusion is in line with the synthesis report (pdf) of the IPCC’s fifth assessment report (AR5), published in 2014, which said:
“The best estimate of the human-induced contribution to warming is similar to the observed warming over [1951-2010].“
That the influence of human activity is marginally larger than the observed temperature rise reflects the mix of impacts that an industrialised society is having. The warming impact of the GHGs that human activity has produced is likely to be in the range of 1.0-2.0C. But then there is also the cooling influence of other “human drivers (principally aerosols)”, the report notes.
Aerosols include tiny particles – such as soot – that are produced from cars, factories and power stations. They tend to have an overall cooling effect on the Earth’s climate by scattering incoming sunlight and stimulating clouds to form. These human drivers could have contributed to a cooling of 0.0-0.8C, the IPCC says.
The net cooling effect of human-caused aerosols “peaked in the late 20th century”, the report notes with high confidence.
Natural influences on the climate had only a small influence on the long-term trend in global temperature, the reports says, with fluctuations in the sun and volcanic activity causing between -0.1C and 0.1C of temperature change and other natural variability causing between -0.2C and 0.2C.
The increase in concentrations of GHGs in the atmosphere since around 1750 “are unequivocally caused by GHG emissions from human activities over this period”, the IPCC says:
“In 2019, atmospheric CO2 concentrations (410 parts per million) were higher than at any time in at least 2m years (high confidence), and concentrations of methane (1866 parts per billion) and nitrous oxide (332 parts per billion) were higher than at any time in at least 800,000 years (very high confidence).”
The figure below shows “the causal chain from emissions to resulting warming of the climate system”. The bottom panel shows the increase in GHGs over 1850-2019, the middle panel shows the resulting rise in atmospheric greenhouse gas emissions, the top left panel shows the change in global surface temperature since 1850 and the top right panel separates the warming out into its different contributing factors.
The causal chain from emissions to resulting warming of the climate system. Panel (a) shows the increase in GHGs over 1850-2019. Panel (b) shows the resulting rise in atmospheric greenhouse gas emissions. Panel (c) shows the change in global surface temperature since 1850. Panel (d) separates the warming out into its different contributing factors. Source: IPCC (2023) Figure 2.1
The report says with high confidence that “land and ocean sinks have taken up a near-constant proportion (globally about 56% per year) of CO2 emissions from human activities over the past six decades”. However, looking to the future, it adds:
“In scenarios with increasing CO2 emissions, the land and ocean carbon sinks are projected to be less effective at slowing the accumulation of CO2 in the atmosphere (high confidence).
“While natural land and ocean carbon sinks are projected to take up, in absolute terms, a progressively larger amount of CO2 under higher compared to lower CO2 emissions scenarios, they become less effective, that is, the proportion of emissions taken up by land and ocean decreases with increasing cumulative net CO2 emissions (high confidence).”
In 2019, global net emissions of GHGs clocked in at 59bn tonnes of CO2 equivalent (GtCO2e), the report says. This is 12% higher than in 2010 and 54% higher than in 1990, with “the largest share and growth in gross GHG emissions occurring in CO2 from fossil fuels combustion and industrial processes followed by methane”.
The report says, with high confidence, that GHG emissions since 2010 have increased “across all major sectors”. It continues:
“In 2019, approximately 34% (20GtCO2e) of net global GHG emissions came from the energy sector, 24% (14GtCO2e) from industry, 22% (13GtCO2e) from AFOLU, 15% (8.7GtCO2e) from transport and 6% (3.3GtCO2e) from buildings.”
However, although average annual GHG emissions between 2010 and 2019 were “higher than in any previous decade”, the rate of growth during this period (1.3% per year) “was lower than that between 2000 and 2009” (2.1% per year), the report notes. This sentence – which also featured in the WG3 report – was added during the approval session at the request of China, the Earth Negotiations Bulletin reported.
Historical contributions to global GHGs “vary substantially across regions” and “continue to differ widely”, the authors note.
In 2019, around 35% of the global population were in countries emitting more than nine tonnes of CO2e per capita – excluding CO2 emissions from land use, land-use change and forestry (LULUCF), the report says.
In contrast, 41% were in countries emitting less than three tonnes of CO2e. It adds that least developed countries (LDCs) and small island developing states (SIDS), in particular, have much lower per-capita emissions (1.7 and 4.6 tonnes of CO2e, respectively) than the global average (6.9 tonnes), excluding CO2 from LULUCF.
Perhaps most starkly, the authors note with high confidence:
“The 10% of households with the highest per-capita emissions contribute 34-45% of global consumption-based household GHG emissions, while the bottom 50% contribute 13-15%.”
The regional variations in emissions are illustrated by the figure below, which shows historical contributions (top-left), per capita emissions in 2019 (top-right) and global emissions since 1990 broken down by emissions (bottom). (For more on historical responsibility for emissions, see Carbon Brief’s analysis from 2021.)
During the approval session, France – supported by around 15 other countries, including the US and Canada – requested that this figure was elevated into the SPM “to provide a clear and necessary narrative about the causes of warming”, the Earth Negotiations Bulletin reported. However, Saudi Arabia, India and China opposed the move and a subsequent huddle was “unable to reach consensus”.
Regional contribution to global GHG emissions. Panel (a) shows the share of historical cumulative net anthropogenic CO2 emissions per region from 1850 to 2019 in GtCO2. Panel (b) shows the distribution of regional per-capita GHG emissions in tonnes CO2e by region in 2019. Both (a) and (b) are separated out by emissions category. Panel (c) shows global net human-caused GHG emissions by region (in GtCO2e per year) for 1990-2019. Percentage values refer to the contribution of each region to total GHG emissions in each respective time period. (The single-year peak of emissions in 1997 was due to a forest and peat fire event in south-east Asia.) Source: IPCC (2023) Figure 2.2
4. How much hotter will the world get this century?
The world will continue to get hotter “in the near term (2021-40)”, the report says, “in nearly all considered scenarios and pathways” for greenhouse gas emissions.
Crucially, however, there is a choice over how hot it gets by the end of the century. As the synthesis report explains: “Future warming will be driven by future emissions.”
The amount of warming this century largely depends on the amount of greenhouse gases that humans release into the atmosphere in the future “with cumulative net CO2 dominating”.
In order to stop global warming, the report says, CO2 emissions are, therefore, “require[d]” to reach net-zero. (See: What is needed to stop climate change?)
The report looks at a range of plausible futures, known as the shared socioeconomic pathways (SSPs), spanning very low to very high emissions. (See: What is this report?)
If emissions are very low (SSP1-1.9), then warming is expected to temporarily “overshoot” 1.5C by “no more than 0.1C” before returning to 1.4C in 2100, the report says.
If emissions are very high (SSP5-8.5), warming could reach 4.4C in 2100. (See below for more on what it would take for the world to follow these different emissions pathways.)
Notably, there is less uncertainty in these projections than there was in AR5. This is because the IPCC has narrowed the range of “climate sensitivity”, using observations of recorded warming to date and improved understanding of clouds.
The alternative emissions futures are shown in the figure below, which illustrates the 1.1C of warming to date and potential increases to 2100 in the style of the famous “climate stripes”.
The figure also illustrates the warming that would take place during the lifetimes of three representative generations born in 1950, 1980 and 2020.
Observed (1900-2020) and projected (2021-2100) warming relative to pre-industrial temperatures (1850-1900). Projections relate to very low emissions (SSP1-1.9), low emissions (SSP1-2.6), intermediate emissions (SSP2-4.5), high emissions (SSP3-7.0) and very high emissions (SSP5-8.5). Temperatures are colour-coded from the pre-industrial average (blue-grey) through to current warming of 1.1C (orange) and potentially more than 4C by 2100 (purple). Source: IPCC (2023) Figure SPM.1
While limiting warming in line with global targets would require “deep and rapid, and, in most cases, immediate greenhouse gas emissions reductions in all sectors this decade”, these efforts would not be felt for some time. The SPM explains with high confidence:
“Continued greenhouse gas emissions will lead to increasing warming…Deep, rapid and sustained reductions in greenhouse gas emissions would lead to a discernible slowdown in global warming within around two decades.”
This delay means that global temperatures are more likely than not to reach 1.5C during 2021-40, the report says, even if emissions are very low.
The report does not give specific “exceedance” years that breach 1.5C for each emissions pathway. (The 1.5C limit of the Paris Agreement relates to long-term averages, rather than warming in a single year.)
The SPM explains that for very low, low, intermediate and high emissions, “the midpoint of the first 20-year running average period during which [warming] reaches 1.5C lies in the first half of the 2030s”. If emissions are very high, it would be in “the late 2020s”.
Similarly, the report says warming will exceed 2C this century “unless deep reductions in CO2 and other GHG emissions occur in the coming decades”.
At the other end of the spectrum, it has “become less likely” that the world will match the very high emissions scenario (SSP5-8.5), where warming exceeds 4C this century.
The report says, with medium confidence, that emissions could only reach such high levels if there is “a reversal of current technology and/or mitigation policy trends”.
However, it says 4C of warming is possible with lower emissions, if carbon cycle feedbacks or climate sensitivity are larger than thought. It explains in a footnote to the SPM:
“Very high emissions scenarios have become less likely, but cannot be ruled out. Warming levels >4C may result from very high emissions scenarios, but can also occur from lower emission scenarios if climate sensitivity or carbon cycle feedbacks are higher than the best estimate.”
In addition to the path of greenhouse gas emissions, changing emissions of “short-lived climate forcers” (SLCFs) can also add to near- and long-term warming, the report says with high confidence. SLCFs include methane, aerosols and ozone precursors, it explains.
There have been concerns that efforts to cut greenhouse gas emissions could also reduce output of cooling aerosols, “unmasking” additional warming. The report plays down this risk:
“Simultaneous stringent climate change mitigation and air pollution control policies limit this additional warming and lead to strong benefits for air quality (high confidence).”
5. What are the potential impacts at different warming levels?
With every extra bit of global warming, extremes facing the world will become larger, the report says.
The Water Cycle. Credit: USGS
For example, it says with high confidence that continued climate change will further intensify the global water cycle, driving changes to monsoons and to very wet and very dry weather.
As temperatures rise, natural land and ocean carbon sinks will be less able to absorb emissions – worsening warming further, the report says with high confidence.
Other changes to expect include further reductions in “almost all” the world’s ice systems, from glaciers to sea ice (high confidence), further global sea level rise (virtually certain), and increasing acidity and decreasing oxygen availability in the oceans (virtually certain).
Every world region will experience more climate impacts with every bit of further warming, the report says.
Compound heatwave and drought extremes are expected to become more frequent in many regions, the report says with high confidence.
Nuisance flooding.
Extreme sea level events that currently occur once in every 100 years are expected to take place at least annually in more than half all measurable locations by 2100, under any future emissions scenario, it says with high confidence. (Extreme sea level events include storm surges and flooding.)
Other projected changes include the intensification of tropical storms (medium confidence) and increases in fire weather (high confidence), according to the report.
It says that the natural variability of the Earth’s climate will continue to act alongside climate change, sometimes worsening and sometimes masking its effects.
The graphic below, from the report’s SPM, illustrates some of the regional impacts of climate change at 1.5C, 2C, 3C and 4C of global warming. (Current policies from governments have the world on track for around 2.7C of warming.)
A selection of regional climate impacts at 1.5C, 2C, 3C and 4C of global warming. [The world is currently on track for 2.7C]. Source: IPCC (2023) Figure SPM.2
In the near term, every world region is expected to face further increases in climate hazards – with rising risk for humans and ecosystems (very high confidence), the report says.
Risks expected to increase in the near-term include heat-related deaths (high confidence), food-, water- and vector-borne diseases (high confidence), poor mental health (very high confidence), flooding in coastal and low-lying cities (high confidence) and a decrease in food production in some regions (high confidence).
At 1.5C, risks will increase for “health, livelihoods, food security, water supply, human security and economic growth”, the report says. At this level of global warming, many low-elevation and small glaciers around the world would lose most of their mass or disappear, the report says with high confidence. Coral reefs are expected to decline by a further 70–90%, it adds with high confidence.
At 2C, risks associated with extreme weather events will transition to “very high”, the report says with medium confidence. At this level of warming, changes in food availability and diet quality could increase nutrition-related diseases and undernourishment for up to “hundreds of millions of people”, particularly among low-income households in sub-Saharan Africa, south Asia and central America, the report says with high confidence.
At 3C, “risks in many sectors and regions reach high or very high levels, implying widespread systemic impacts”, the report says. The number of endemic species in biodiversity hotspots at a very high risk of extinction is expected to be 10 times higher than at 1.5C, it says with medium confidence.
At 4C and above, around half of tropical marine species could face local extinction, the report says with medium confidence. Around four billion people could face water scarcity, it says with medium confidence. It adds that the global area burned by wildfires could increase by 50-70% (medium confidence).
The graphic below, from the report’s SPM, illustrates the risks facing Earth’s species (a) and human health risk from extreme heat-humidity (b) under different levels of global warming.
It shows that, at temperatures above 2C, some regions will see all of their wildlife exposed to dangerous temperatures, assuming the species do not relocate to somewhere else.
It also shows that, above 2C, some people will live in regions where temperature and humidity conditions are deadly every day of the year.
Risks to species and humans at various levels of global warming. Source: IPCC (2023) SPM.3a and b
The risks identified in this report are larger at lower levels at warming, when compared to the IPCC’s last assessment in 2014.
This is because of new evidence from climate extremes already recorded, improved scientific understanding, new knowledge on how some humans and species are more vulnerable than others and a better grasp of the limits to adaptation, the report says with high confidence.
Because of “unavoidable” sea level rise, risks for coastal ecosystems, people and infrastructure will continue to increase beyond 2100, it adds with high confidence.
As climate change worsens, risks “will become increasingly complex and more difficult to manage”, the report says.
Climate change is likely to compound other societal issues, it says. For example, food shortages driven by warming are projected to interact with other factors, such as conflicts, pandemics and competition over land, the report says with high confidence.
Most pathways for how the world can meet its ambitious 1.5C temperature involve a period of “overshoot” where temperatures exceed this level of warming temporarily before dropping back down.
During this period of overshoot, the world would see “adverse impacts” that may worsen climate change, such as increased wildfires, mass mortality of ecosystems and permafrost thawing, the report says with medium confidence.
The report adds that solar geoengineering – methods for reflecting away sunlight to reduce temperature rise – has the “potential to offset warming within one or two decades and ameliorate some climate hazards”, but could also “introduce a widespread range of new risks to people and ecosystems” and “would not restore climate to a previous state”.
6. What are the risks of abrupt and irreversible change?
The report warns that continued emissions of GHGs will “further affect all major climate system components and many changes will be irreversible on centennial to millennial timescales”.
While “many changes in the climate system” will become larger “in direct relation to increasing global warming”, the likelihood of “abrupt and/or irreversible outcomes increases with higher global warming levels”, the report says with high confidence. For example, it says:
“As warming levels increase, so do the risks of species extinction or irreversible loss of biodiversity in ecosystems such as forests (medium confidence), coral reefs (very high confidence) and in Arctic regions (high confidence).”
The impacts of warming on some ecosystems are already “approaching irreversibility”, the report says, “such as the impacts of hydrological changes resulting from the retreat of glaciers, or the changes in some mountain (medium confidence) and Arctic ecosystems driven by permafrost thaw (high confidence)”.
Abrupt and irreversible changes can include those “triggered when tipping points are reached”, the report says:
“Risks associated with large-scale singular events or tipping points, such as ice sheet instability or ecosystem loss from tropical forests, transition to high risk between 1.5C-2.5C (medium confidence) and to very high risk between 2.5C-4C (low confidence).”
(See Carbon Brief’s explainer for more on tipping points.)
The report has high confidence that “the probability of low-likelihood outcomes associated with potentially very large impacts increases with higher global warming levels”. The impact of these abrupt changes would be dramatic.
Citing an example of the Atlantic Meridional Overturning Circulation (AMOC), a major system of currents in the Atlantic Ocean that brings warm water up to Europe from the tropics and beyond, the report says:
“[AMOC] is very likely to weaken over the 21st century for all considered scenarios (high confidence), however an abrupt collapse is not expected before 2100 (medium confidence). If such a low probability event were to occur, it would very likely cause abrupt shifts in regional weather patterns and water cycle, such as a southward shift in the tropical rain belt, and large impacts on ecosystems and human activities.”
For comparison, the AR5 synthesis report also concluded that a weakening of AMOC was very likely, but said that an abrupt transition or collapse in the 21st century was very unlikely.
The report notes that “low-likelihood, high-impact outcomes could occur at regional scales even for global warming within the very likely assessed range for a given GHG emissions scenario”.
The report has a particularly stark assessment on the projected impacts of global warming on the ocean. The authors warn, with high confidence, that sea level rise is “unavoidable for centuries to millennia due to continuing deep ocean warming and ice sheet melt”. And levels will “remain elevated for thousands of years”.
While the authors are virtually certain that sea level rise will continue through this century, “the magnitude, the rate, the timing of threshold exceedances, and the long-term commitment of sea level rise depend on emissions, with higher emissions leading to greater and faster rates of sea level rise”.
Over the next 2,000 years, global average sea level “will rise by about 2-3 metres if warming is limited to 1.5C and 2-6 m if limited to 2C”, the report says, with low confidence.
Warming beyond 2C could put the Earth’s massive ice sheets at risk, the report says:
“At sustained warming levels between 2C and 3C, the Greenland and West Antarctic ice sheets will be lost almost completely and irreversibly over multiple millennia (limited evidence).”
These projections of sea level rise across thousands of years are “consistent with reconstructed levels during past warm climate periods”, the report notes.
For example, it says with medium confidence, “global mean sea level was very likely 5-25 metres higher than today roughly 3m years ago, when global temperatures were 2.5-4C higher than 1850-1900”.
In addition to rising sea levels, the authors say it is virtually certain that ocean acidification – where seawater becomes less alkaline – will continue throughout this century. And they have high confidence that deoxygenation – the decline in oxygen levels in the ocean – will too.
The report also cautions that the amount of warming – and the impact it would have – could be more severe than projected.
For example, it says, “warming substantially above the assessed very likely range for a given scenario cannot be ruled out, and there is high confidence this would lead to regional changes greater than assessed in many aspects of the climate system”.
On sea levels, the authors add:
“Global mean sea level rise above the likely range – approaching two metres by 2100 and in excess of 15 metres by 2300 under a very high GHG emissions scenario (SSP5-8.5) (low confidence) – cannot be ruled out due to deep uncertainty in ice-sheet processes and would have severe impacts on populations in low elevation coastal zones.”
7. What does the report say on loss and damage?
For the first time ever, the term “loss and damage” is mentioned in an IPCC synthesis report. This reflects its prominence in the 1.5C special report and WG2 report during the sixth assessment cycle.
It acknowledges that there has been an “improved understanding” of what constitutes economic and non-economic losses and damages. In turn, this has served to inform climate policy as well as highlight governance, financial and institutional gaps in how it is being addressed.
The AR6 synthesis report mentions the formal recognition of “loss and damage”. Source: IPCC (2023) Full report p18
After this single mention, the report discusses “losses and damages” more broadly. These, it defines in a footnote in the SPM, are the “adverse observed impacts and/or projected risks and can be economic and/or non-economic”.
Including loss and damage in the IPCC’s assessments has been a fraught process. The use of two separate terms separates the scientific “losses and damages” from the political debate of “loss and damage” under the UNFCCC, even as impacted countries hope to connect the two.
In the plenary discussions, Grenada – supported by Senegal, Antigua and Barbuda, Timor Leste, Kenya and Tanzania – wanted vulnerable countries to be referenced and the differences between the two terms explicitly clarified, given that “the distinction is often confusing to people outside of the IPCC”. The US, meanwhile, supported putting a definition in the footnote.
On the impacts of climate change, the report recognises and reviews “strengthened” evidence of heatwaves, extreme rainfall, droughts and tropical cyclones, plus their attribution to human influence, since the last synthesis report.
In all regions, extreme heat events have resulted in human mortality and morbidity, it says with very high confidence, while climate-related food-borne and water-borne diseases have increased. Climate change is also contributing to humanitarian crises “where climate hazards interact with high vulnerability”, the report states with high confidence.
Climate change has caused “substantial damages, and increasingly irreversible losses” in land-based, freshwater, coastal, ocean and open ecosystems, as well as in glaciers and continental ice sheets, the report’s summary says with high confidence.
The A2 headline statement from the SPM that authors “spent hours crafting” to reflect vulnerability and impacts on human and natural systems. IPCC (2023) SPM p5
The widespread “losses and damages to nature and people” are unequally distributed across systems, regions and sectors”, says the report’s summary, pointing to both economic and non-economic losses.
Sectors such as agriculture, forestry, fishery, energy, and tourism that are “climate exposed” have experienced economic damages from climate change, the report states with high confidence.
Across the world, non-economic loss and damage impacts, such as mental health challenges, were associated with trauma from extreme weather events and loss of livelihoods and culture. (According to the Earth Negotiations Bulletin, India requested that mental health not be included in these impacts, which Finland opposed.)
The report says with high confidence that “vulnerable communities who have historically contributed the least to current climate change are disproportionately affected”.
For example, fatalities from floods, droughts and storms were 15 times higher in highly vulnerable regions between 2010 to 2020, compared to regions with very low vulnerability, it states with high confidence.
In urban areas, losses and damages are “concentrated” in communities of economically and socially marginalised residents, the report notes.
The figure below shows observed impacts on human systems and ecosystems attributed to climate change at global and regional levels, along with confidence in their attribution to climate change.
Observed and widespread impacts and related losses and damages attributed to climate change. Mental health and displacement impacts are limited to only regions assessed. Confidence levels reflect attribution studies so far. Source: IPCC (2023), Figure SPM1a
The report states with very high confidence that “losses and damages escalate with every increment of global warming”.
These will be higher at 1.5C and even higher at 2C, the report’s summary states. Compared to AR5, “global aggregated risk levels” will be high to very high even at lower warming levels, owing to an improved understanding of exposure, vulnerability and recent evidence, including “limits to adaptation”. Climatic and non-climatic risks will increasingly interact, leading to “compound and cascading risks” that are difficult to manage.
However, near-term climate actions that rein in global warming to “close to 1.5C” could “substantially reduce” losses and damages to humans and ecosystems. Still, even these actions “cannot eliminate them all”, the report notes.
Overall, the magnitude and rate of future losses and damages “depend strongly” on near-term mitigation and adaptation actions, the report says with very high confidence.
Delaying mitigation will only increase warming, which could derail the effectiveness of adaptation options, it says with high confidence, leading to more climate risks and related losses and damages.
However, the report and its summary warn with high confidence that “adaptation does not prevent all losses and damages”. The authors point out with high confidence that some ecosystems, sectors and regions have already hit limits to how much they can adapt to climate impacts. In some cases, adaptive actions are unfeasible – that is, they have “hard limits” – for certain natural systems or are simply not an option because of socioeconomic or technological barriers – known as “soft limits” – leading to unavoidable loss and damage impacts.
“One of the new messages in this report is that it effectively busts the myth of endless adaptation,” said report author Dr Aditi Mukherji, director at the Consultative Group on International Agricultural Research (CGIAR), speaking at a press conference.
8. Why is climate action currently ‘falling short’?
Current pledges for how countries will cut emissions by 2030 make it likely that global warming will exceed 1.5C this century and will make it harder to limit temperatures to 2C, according to one of the headline findings of the report.
The establishment of the Paris Agreement – the landmark climate deal reached in 2015 – has led to more target-setting and “enhanced transparency” for climate action, the report says with medium confidence.
At the same time, there has been “rising public awareness” about climate change and an “increasing diversity” of people taking action. These efforts “have overall helped accelerate political commitment and global efforts to address climate change”, the report says, adding:
“In some instances, public discourses of media and organised counter movements have impeded climate action, exacerbating helplessness and disinformation and fuelling polarisation, with negative implications for climate action (medium confidence).”
It says with high confidence that many rules and economic tools for tackling emissions have been “deployed successfully” – leading to enhanced energy efficiency, less deforestation and more low-carbon technologies in many countries. This has in some cases lowered emissions.
By 2020, laws for reducing emissions were in place in 56 countries – covering 53% of global emissions, the report says.
At least 18 countries have seen their production and consumption emissions fall for at least 10 years, it adds. But these reductions have “only partly offset” global emissions increases.
The report adds that there are several options for tackling climate change that are “technically viable”, “increasingly cost effective” and are “generally supported by the public”.
It adds that, over 2010-19, there have been large decreases in the unit costs of solar power (85%), wind (55%) and lithium ion batteries (85%). In many regions, electricity from solar and wind is now cheaper than that derived from fossil fuels, the report says.
Solar installation in the San Luis Valley. Photo credit: Western Resource Advocates
(According to the Earth Negotiations Bulletin, a group of countries including Germany, Denmark and Norway strongly argued for the report to highlight that renewables are now cheaper than fossil fuels in many regions. Finland suggested adding that fossil fuels are the “root cause” of climate change, but this was strongly opposed by Saudi Arabia.)
At the same time, there have been “large increases in their deployment”, including a global average of 10 times for solar and 100 times for electric cars, the report says.
Falling costs and increased deployment have been boosted by public research and funding and demand-side policies such as subsidies, it says, adding:
“Maintaining emission-intensive systems may, in some regions and sectors, be more expensive than transitioning to low-emission systems (high confidence).”
(According to the Earth Negotiations Bulletin, India, supported by Brazil, said the sentence “favoured developed countries as it did not reference feasibility and challenges”.)
Despite this, a “substantial emissions gap” remains between what global GHG emissions are projected to be in 2030 and what they must be if the world is to limit global warming to 1.5C or 2C, the report says with high confidence. (The 2030 projections are derived from country climate pledges made prior to COP26 in 2021.)
This gap would “make it likely that warming will exceed 1.5C during the 21st century”, the report says with high confidence.
Pathways for how the world can limit global warming to 1.5C or 2C depend on deep global emissions cuts this decade, it adds with high confidence.
The report says with medium confidence that country climate plans ahead of COP26 would lead to around 2.8C of warming (range from 2.1-3.4C) by 2100.
However, it adds with high confidence that policies put in place by countries by the end of 2020 would not be sufficient to achieve these climate plans. This represents an “implementation gap”.
When just policies put in place by the end of 2020 are considered, around 3.2C of warming (range 2.2-3.5C) is projected by 2100, the report says with medium confidence.
The chart below, from the SPM, illustrates the warming expected in 2100 from policies implemented by 2020 (red), as well as what emissions cuts would need to look like to reach 1.5C (blue) or 2C (green).
Expected warming in 2100 from policies implemented by the end of 2020 (red), compared with emissions cuts needed to limit warming to 1.5C (blue) or 2C (green). Source: IPCC (2023) SPM.5
“Additional implemented policies since the cut-off date would lead to those curves drawing down a little bit, compared to where they are. But everything that has happened since the IPCC cut-off – which is outside the scope of this synthesis report – would suggest that we’re still some way off.”
(A November 2022 assessment from the independent research group Climate Action Tracker found that country climate plans for 2030 in place by that time would cause 2.4C (range 1.9-2.9C) of warming. Policies in place by that time would cause 2.7C (range 2.2-3.4C), it added.)
The report also notes that many countries have signalled intentions to achieve net-zero greenhouse gas or CO2 emissions by 2050. However, it says such pledges differ “in terms of scope and specificity, and limited policies are to date in place to deliver on them”.
In most developing countries, the rollout of low-carbon technologies is lagging behind, the report adds. This is due in part to a lack of finance and technology transfer from developed countries, it says with medium confidence.
The leveraging of climate finance for developing countries has slowed since 2018, the report says with high confidence. It adds:
“Public and private finance flows for fossil fuels are still greater than those for climate adaptation and mitigation (high confidence).”
9. What is needed to stop climate change?
“There is a brief and rapidly closing window of opportunity to secure a liveable and sustainable future for all,” the report says with high confidence.
The synthesis delivers a blunt message on what will be needed to stop climate change, saying “limiting human-caused warming requires net-zero CO2 emissions”.
(The Earth Negotiations Bulletin says there was debate over this opening sentence in section B5 of the SPM. It reports: “The authors said that a fundamental insight of AR6 is that, to hold warming at any level, net-zero [CO2] emissions are required at some point.)
The report goes on to say, with high confidence, that reaching net-zero greenhouse gas emissions would imply net-negative CO2 – and would “result in a gradual decline in surface temperatures”.
Reaching net-zero emissions requires “rapid and deep and, in most cases, immediate greenhouse gas emissions reductions in all sectors this decade”, according to the report.
Repeating language from the underlying WG3 report, it adds that global GHG emissions must peak “between 2020 and at the latest before 2025” to keep warming below 1.5C or 2C.
In contrast with the direct wording on net-zero, the report barely mentions coal, oil and gas.
A coal train moves in front of the Black Thunder mine outside Wright in October, 2016. (Andrew Graham/WyoFile)
However, it does say net-zero would mean a “substantial reduction in overall fossil fuel use”.
Staying below 1.5C or 2C depends on cumulative carbon emissions at the time of reaching net-zero CO2 and the level of greenhouse gas emissions cuts this decade, the report says.
Specifically, net-zero CO2 needs to be reached “in the early 2050s” to stay below 1.5C:
“Pathways that limit warming to 1.5C (>50%) with no or limited overshoot reach net-zero CO2 in the early 2050s, followed by net-negative CO2 emissions. Those pathways that reach net-zero GHG emissions do so around the 2070s. Pathways that limit warming to 2C (>67%) reach net-zero CO2 emissions in the early 2070s.”
(There was some confusion on this point after a speech by UN secretary-general António Guterres launching the IPCC report. Guterres called for global net-zero emissions by 2050, with developed countries going faster, but did not say if he was referring to CO2 or GHGs.)
There is a direct link between cumulative carbon emissions and warming, with the report saying that every 1,000GtCO2 raises temperatures by 0.45C. The report says with high confidence:
“From a physical science perspective, limiting human-caused global warming to a specific level requires limiting cumulative CO2 emissions, reaching at least net-zero CO2 emissions, along with strong reductions in other greenhouse gas emissions.”
This results in “carbon budgets” that must not be exceeded if the world is to limit warming to a given level. As of the start of 2020, the remaining budget to give a 50% chance of staying below 1.5C is 500GtCO2, rising to 1,150GtCO2 for a 67% chance of staying below 2C.
(Stronger reductions of non-CO2 emissions would mean a larger carbon budget for a given temperature limit, the report notes, and vice versa.)
Some four-fifths of the total budget for 1.5C has already been used up during 1850-2019 and the last fifth would be “almost exhaust[ed]” by 2030, if emissions remained at 2019 levels.
In order to stay within the budget for 1.5C, global greenhouse gas emissions would need to fall to 43% below 2019 levels by 2030 and to 60% below by 2035, falling 84% by 2050.
Even faster reductions are required for CO2 emissions, which would fall to 48% below 2019 levels by 2030, 65% by 2035 and 99% by 2050, when they would effectively hit net-zero.
The synthesis report lists these numbers in a new table, below. While the information is not new, it had not previously been presented in an accessible format. It was added during the week-long approval process and is labelled “Table XX”.
Central (median) CO2 and GHG reductions in 2030, 2035, 2040 and 2050, relative to 2019 levels, in 97 “C1” scenarios that have a greater than 50% chance of limiting warming to 1.5C with no or limited overshoot, and in 311 “C3” scenarios that have a 67% chance of limiting warming to 2C. Numbers in square brackets indicate 5th to 95th percentile ranges across the scenarios. Note that most of these scenarios are designed to cut emissions globally at “least-cost”, meaning they “do not make explicit assumptions about global equity, environmental justice or intraregional income distribution”. Source: IPCC (2023) Table XX.
At a briefing for journalists held by the UK Science Media Centre, Dr Chris Jones, synthesis report author and research fellow at the UK’s Met Office, said: “We hope, obviously, this information is useful for the stocktake process.”
(This refers to the “global stocktake” of progress to date and the efforts needed to meet international climate goals, which is taking place this year as part of the UN climate process.)
The report outlines how the world could reach net-zero CO2 emissions via a “substantial reduction in overall fossil fuel use, minimal use of unabated fossil fuels, and use of carbon capture and storage (CCS) in the remaining fossil fuel systems”.
(The phrase “unabated fossil fuels” is defined in a footnote to the report, by comparison with “abatement”, which it says would mean “capturing 90% or more CO2 from power plants, or 50–80% of fugitive methane emissions from energy supply”.)
While the world needs to make “deep and rapid” cuts in gross emissions, the use of CO2 removal (CDR) is also “unavoidable” to reach net-zero, the report says with high confidence.
The report explains:
“[P]athways reaching net-zero CO2 and GHG emissions include transitioning from fossil fuels without carbon capture and storage (CCS) to very low- or zero-carbon energy sources, such as renewables or fossil fuels with CCS, demand-side measures and improving efficiency, reducing non-CO2 GHG emissions, and CDR.”
CDR will be needed to “counterbalance” hard-to-abate residual emissions in some sectors, for example “some emissions from agriculture, aviation, shipping and industrial processes”.
Emphasising the challenge of limiting warming, the report says the fossil fuel infrastructure that has already been built would be enough to breach the 1.5C carbon budget, if operated in line with historical patterns and in the absence of extra abatement.
This is shown in the figure below. The top panel shows historical emissions and the remaining budgets for 1.5C or 2C, as well as emissions this decade if they remain at 2019 levels and the emissions of existing and planned fossil fuel infrastructure.
The lower panel shows historical warming and potential increases by 2050, in relation to the carbon budgets and the range of possible emissions over the same period.
Cumulative past, projected and “committed” CO2 emissions from existing and planned fossil fuel infrastructure, GtCO2, and associated global warming. Source: IPCC (2023) Figure 3.5.
Delaying emissions cuts risks “lock-in [of] high-emissions infrastructure”, the report states, adding with high confidence that this would “raise risks of stranded assets and cost-escalation, reduce feasibility, and increase losses and damages”.
The report notes that only “a small number of the most ambitious global modelled pathways” avoid temporary overshoot of the 1.5C target. However, warming “could gradually be reduced again by achieving and sustaining net-negative global CO2 emissions”.
On the other hand, the IPCC warns of “additional risks” as a result of overshoot, defined as exceeding a warming level and returning below it later. It states with high confidence:
“Overshoot entails adverse impacts, some irreversible, and additional risks for human and natural systems, all growing with the magnitude and duration of overshoot.”
The report adds that some of these impacts could make it harder to return warming to lower levels, stating with medium confidence:
“Adverse impacts that occur during this period of overshoot and cause additional warming via feedback mechanisms, such as increased wildfires, mass mortality of trees, drying of peatlands, and permafrost thawing, weakening natural land carbon sinks and increasing releases of GHGs would make the return more challenging.”
It says the risks around overshoot, as well as the “feasibility and sustainability concerns” for CDR, can be minimised by faster action to cut emissions. Similarly, development pathways that use resources more efficiently also minimise dependence on CDR.
10. How can individual sectors scale up climate action?
In order to limit warming to 2C or below by the end of the century, all sectors must undergo “rapid and deep, and in most cases, immediate greenhouse gas emissions reductions”, the report says.
Limiting warming to 1.5C with “no or limited overshoot” requires achieving net-zero CO2 emissions in the early 2050s. To keep warming to 2C, net-zero CO2 must be achieved “around the early 2070s”.
It continues, with medium confidence:
Source: IPCC (2023) Full report, p68
Reducing emissions from the energy sector requires a combination of actions, the report says: a “substantial reduction” in the use of fossil fuels; increased deployment of energy sources with zero or low emissions, “such as renewables or fossil fuels with CO2 capture and storage” (CCS); improving energy efficiency and conservation; and “switching to alternative energy carriers”.
For sectors that are harder to decarbonise, such as shipping, aviation, industrial processes and some agriculture-related emissions, the report notes that using carbon dioxide removal (CDR) technologies to counterbalance these residual emissions “is unavoidable”.
Graphic credit: The Nature Conservancy
The language around CCS and CDR was some of the most contentious during the approval session. According to the Earth Negotiations Bulletin, Germany “suggested including a brief overview of the feasibility and current deployment of different CDR methods”, with France adding that policymakers must be made aware of the associated challenges.
But Saudi Arabia countered that if these barriers were made explicit in this section, it “would require similar balancing language on the feasibility of solar and renewables elsewhere in the report”.
Similar discussions were had around CCS, with the authors ultimately agreeing to add a sub-paragraph in a footnote that details both the limits and benefits of CCS, at the urging of Germany and Saudi Arabia, respectively.
The report discusses several technologies across a range of maturity, removal and storage potential and costs. It finds that “all assessed modelled pathways that limit warming to 2C (>67%) or lower by 2100” rely, at least in part, on mitigation from agriculture, forestry and other land use (AFOLU). Such approaches are currently “the only widely practised CDR methods”, the report notes.
However, it details trade-offs and barriers to large-scale implementation of AFOLU-based mitigation, including climate change impacts, competing demands for land use, endangering food security and violation of Indigenous rights.
The report also discusses sector-specific actions that can be taken in order to limit emissions and climate impacts. These transformations, it says, are “required for high levels of human health and well-being, economic and social resilience, ecosystem health and planetary health”.
The chart below shows near-term feasibility of adaptation (left) and mitigation (right) options, divided across six sectors (top left to bottom right): energy supply; land, water and food; settlements and infrastructure; health; society, livelihood and economy; and industry and waste.
For adaptation options, the figure shows the potential for synergies with mitigation strategies and the feasibility of these options up to 1.5C of warming, from low (light purple) to high (dark blue). The dots in each box represent the confidence level, from low (one dot) to high (three dots).
On the right, mitigation options are presented with their potential contribution to emissions reductions by 2030, in GtCO2e per year. The colours indicate the cost of each option, from low (yellow) to high (red), with blue indicating options that are cheaper than fossil fuels. Some of the mitigation options with the highest potential for cost-saving are solar and wind power, efficient vehicles, lighting and other equipment, and public transit and cycling.
Feasibility of climate adaptation options and their synergies with mitigation actions (left) and potential contributions of mitigation options to emissions reductions by the end of the decade (right). Source: IPCC (2023) Figure 4.4a
Some of these mitigation options relate to changes in energy demand, rather than supply. This includes “changes in infrastructure use, end-use technology adoption and socio-cultural and behavioural change”, the report says, noting that such changes can reduce emissions in end-use sectors by 40-70% by mid-century.
The chart below shows the mid-century mitigation potential of demand-side changes across a range of sectors: food (including diet and waste), land transport, buildings, industry and electricity. The green arrows represent the mitigation potential in GtCO2 per year.
The mitigation potential, in GtCO2e per year, of five demand-side sectors (top to bottom): food, land transport, buildings, industry and electricity. The grey bar shows the additional emissions that continued electrification will add. Source: IPCC (2023) Figure 4.4b
Section 4.5 of the report goes into detail about near-term mitigation and adaptation, in subsections covering energy systems; industry; cities, settlements and infrastructure; land, ocean, food and water; health and nutrition; and society, livelihoods and economies. At the urging of India (supported by Saudi Arabia and China) in the approval session, the report notes that the availability and feasibility of these options differs “across systems and regions”.
On energy systems, the report says with high confidence that “major energy system transitions” are required and with very high confidence that adaptation “can help reduce climate-related risks to the energy system”, including extreme events that can damage or otherwise affect energy infrastructure.
It notes that many of the options for large-scale emissions reductions are “technically viable and supported by the public”. It adds:
“Maintaining emission-intensive systems may, in some regions and sectors, be more expensive than transitioning to low emission systems.”
However, adaptation measures for certain types of power generation, such as hydropower, have “decreasing effectiveness at higher levels of warming” beyond 1.5C or 2C, the report notes. Reducing vulnerabilities in the energy sector requires diversification and changes on the demand side, including improving energy efficiency.
The strategies to reduce industrial emissions “differ by type of industry”, the report says. Light manufacturing can be “largely decarbonised” through available technologies and electrification, while decarbonising others will require the use of carbon capture and storage and the development of new technologies. The report adds that extreme events will cause “supply and operational disruptions” across many industries.
“Effective mitigation” strategies can be implemented at every step of building design, construction and use, the report says. It notes that demand-side measures can help reduce transportation-related emissions, as can re-allocating street space for pedestrians and cyclists and enabling telework.
With high confidence, it says:
“Key infrastructure systems including sanitation, water, health, transport, communications and energy will be increasingly vulnerable if design standards do not account for changing climate conditions.”
The report also says that “green” and “blue” infrastructure have myriad benefits: climate change mitigation, reducing extreme weather risk and improving human health and livelihoods.
AFOLU, as well as the ocean, offer “substantial mitigation and adaptation potential…that could be upscaled in the near term across most regions”, the report finds. It notes that conservation and restoration of ecosystems provide “the largest share” of this potential. It reads:
Source: IPCC (2023) Full report, p73
Such actions must be taken with the cooperation and involvement of local communities and Indigenous peoples, the report adds.
With very high confidence, the report states that “mainstream[ing]” health considerations into policies will benefit human health. There is also high confidence in the existing availability of “effective adaptation options” in the health sector, such as improving access to drinking water and vaccine development. The report states with high confidence:
“A key pathway to climate resilience in the health sector is universal access to healthcare.”
The report calls for improving climate education, writing with high confidence:
“Climate literacy and information provided through climate services and community approaches, including those that are informed by Indigenous knowledge and local knowledge, can accelerate behavioural changes and planning.”
It says that many types of adaptation options “have broad applicability across sectors and provide greater risk reduction benefits when combined”. It also calls for “accelerating commitment and follow-through” from private sector actors.
11. What does the report say about adaptation?
The world is not adapting fast enough to climate change – and limits to adaptation have already been reached in some regions and ecosystems, the report says.
It says with very high confidence that there has been progress with adaptation planning and roll-out in all sectors and regions – and that accelerated adaptation will bring benefits for human wellbeing.
Adaptation to water-related risks make up more than 60% of all documented adaptation practices, the report says with high confidence.
Examples of effective adaptation have occurred in food production, such as through planting trees on cropland, diversification in agriculture and water management and storages, the report says with high confidence.
“Ecosystem-based approaches”, such as urban greening and restoring wetlands and forests, have been effective in “reducing flood risks and urban heat”, it adds with high confidence.
In addition, combinations of “non-structural measures”, such as early warning systems, and structural measures such as levees have reduced deaths from flooding, the report says with medium confidence.
But, despite progress, most adaptation is “fragmented, incremental, sector-specific and unequally-distributed across regions”, the report says, adding:
“Adaptation gaps exist across sectors and regions, and will continue to grow under current levels of implementation, with the largest adaptation gaps among lower income groups.”
Key barriers to adaptation include a lack of financial resources, political commitment and a “low sense of urgency”, the report says.
The total amount spent on adaptation has increased since 2014. However, there is currently a widening gap between the costs of adaptation and the amount of money set aside for adaptation, according to the report.
It says with very high confidence that the “overwhelming majority” of climate finance goes towards mitigation rather than adaptation. (See: Why is finance an ‘enabler’ and ‘barrier’ for climate action?)
It adds with medium confidence that financial losses caused by climate change can reduce funds available for adaptation – hence, leaving countries more vulnerable to future impacts. This is particularly true for developing and least-developed countries.
The report says with medium confidence that some people are already experiencing “soft limits” to adaptation. “Soft limits” are those where there is currently no way to adapt to the change, but there may be a way in the future. This includes small-scale farmers and households living in low-lying coastal areas.
Some areas have reached “hard limits” to adaptation, where no further adaptation to climate change is possible, the report says with high confidence. This includes some rainforests, tropical coral reefs, coastal wetlands, and polar and mountain ecosystems.
In the future, “adaptation options that are feasible and effective today will become constrained and less effective with increasing global warming”, the report says. It adds:
“With increasing global warming, losses and damages will increase and additional human and natural systems will reach adaptation limits.”
For example, the effectiveness of reducing climate risks by switching crop varieties or planting patterns – commonplace on farms today – is projected to decrease above 1.5C of warming, the report says with high confidence. The effectiveness of on-farm irrigation is projected to decline above 3C, it adds.
Above 1.5C of warming, small island populations and regions dependent on glaciers for freshwater could face hard adaptation limits, the report says with medium confidence.
At this level of warming, ecosystems such as coral reefs, rainforests and polar and mountain ecosystems will have surpassed hard adaptation limits – meaning some ecosystem-based approaches will become ineffective, the report says with high confidence.
By 2C, soft limits are projected for multiple staple crops, particularly in tropical regions, it says with high confidence. By 3C, hard limits are projected for water management in parts of Europe, it says with medium confidence.
Even before limits to adaptation are reached, adaptation cannot prevent all loss and damage from climate change, the report says with high confidence. (See: What does the report say on loss and damage?)
(According to the Earth Negotiations Bulletin, China requested removing a reference to “adaptation limits” from one of the headline statements of the SPM. It was opposed by countries including the UK, Denmark, Germany, Saint Kitts and Nevis, the Netherlands, Switzerland, Mexico and Belize.)
The report says with high confidence that sea level rise poses a “distinct and severe adaptation challenge”. This is because it requires dealing with both slow onset changes and increases in extreme sea level events such as storm surges and flooding.
The graphic below illustrates some of the adaptation responses to sea level rise, including the time it takes for implementation and their typical intended lifetimes.
“Ecosystem-based” approaches include enhancing coastal wetlands. Such approaches come with co-benefits for biodiversity and reducing emissions, but start to become ineffective above 1.5C of warming, the report says with medium confidence.
“Sediment-based” approaches include seawalls. These can be ineffective “as they effectively reduce impacts in the short-term but can also result in lock-ins and increase exposure to climate risks in the long-term”, the report says.
Planned relocation methods can be more effective if they are aligned with sociocultural values and involve local communities, the report says.
The report warns with high confidence that there is now more evidence of “maladaptation” – actions intended to adapt to climate change that create more risk and vulnerability.
Examples of maladaptation include new urban buildings that cannot easily be adjusted for climate risks or high-cost irrigation systems for agriculture in areas where droughts are projected to intensify, the report says.
Maladaptation “especially affects” marginalised and vulnerable groups, including Indigenous peoples, ethnic minorities, low-income households and people living in informal settlements. This can “reinforce and entrench” existing inequalities.
12. What are the benefits of near-term climate action?
The report is clear that fast action to mitigate emissions and adapt to climate impacts has a range of benefits – but acknowledges that it will likely be disruptive and have high up-front costs.
The rate of climate change and the associated risks “depend strongly” on near-term climate action, the report says. The SPM notes with high confidence:
“The choices and actions implemented in this decade will have impacts now and for thousands of years.”
The overarching benefit of near-term mitigation action is less global warming over time and thereby fewer negative impacts, such as extreme weather events.
Accelerated mitigation measures would also reduce future adaptation costs alongside other benefits, such as reducing the risk of irreversible climate changes, the synthesis report says.
A quick reduction in methane emissions, in particular, can limit near-term warming, the report says with high confidence. Methane has a much shorter lifespan in the atmosphere than CO2.
Delaying actions to prevent further warming will lead to a larger temperature rise, which will, in turn, make adaptation measures less effective, it says.
Adaptation actions can take a long time to be put in place. The report stresses that long-term planning and faster implementation, especially in this decade, “is important to close adaptation gaps”.
Adaptation measures, the report adds, can improve agricultural productivity, innovation, health and wellbeing, food security, livelihood and biodiversity conservation.
Text on mitigation co-benefits for sustainable development Source: IPCC (2023) Full report, p59
There are other co-benefits to cutting emissions and taking faster action on adaptation. The SPM says that “deep, rapid and sustained” action in this decade would lower air pollution, spark more walking and cycling and prompt more sustainable, healthy diets.
The money saved from a health perspective as a result of improved air quality “can be of the same order of magnitude as mitigation costs, and potentially even larger”, the report adds.
There are further economic benefits to near-term climate action, but the SPM says the cost-benefit analysis “remains limited” in assessing all avoided damages.
Outside of the benefits of avoiding possible damages, the economic and social benefits of limiting global warming to 2C exceeds mitigation costs in most literature, the SPM says with medium confidence.
The SPM says that faster mitigation with emissions peaking earlier increases the co-benefits of action and reduces risks and costs in the long-term.
It further says, with high confidence, that near-term actions require “high up-front investments and potentially disruptive changes”.
Barriers to deploy mitigation and adaptation actions need to be removed or reduced to utilise these options at scale, the report says.
To scale up these actions, the report says that both low- and high-cost options, such as using more renewables, making buildings more efficient and using electric vehicles, are required to avoid future lock-ins, advance innovation and start transformational changes.
Leaf charging at the Lionshead parking facility in Vail September 30, 2021.
The impacts of these changes can be “moderated” by reforms and policies in order to accelerate climate action such as improving access to finance for low-emissions infrastructure and technologies, especially in developing countries.
Delaying action comes with multiple challenges, the report says, such as cost escalation risks, lock-in of infrastructure and stranded assets.
In other words, continuing to install unabated fossil fuel infrastructure will “lock-in” emissions into the future. And taking action on fossil-fuel burning sooner rather than later would limit the size of stranded assets – such as fossil-fuel infrastructure – that will be worth a lot less money in future in a world more reliant on low-carbon energy.
Delaying action on this would increase policy risks and may endanger efforts to limit global warming, the report says with high confidence.
Climate action is enabled by good climate governance providing an overall direction, the report says.
This involves setting targets, including climate action in different policy areas, prioritising equitable decision-making and enhancing access to finance. The report adds that climate action benefits from drawing on a diverse range of knowledge.
13. Why is finance an ‘enabler’ and ‘barrier’ for climate action?
Finance is one of the “critical enablers” to speed up climate action, the synthesis report outlines, and lack of funding is a barrier to progress.
Difficulty accessing climate finance slows down both mitigation and adaptation action, particularly in developing countries, the report warns. Improving access to funds will help to accelerate climate action, the report says with very high confidence.
It adds that funding for mitigation and adaptation needs to increase “many-fold” to achieve climate goals, address risks and speed up investment in emissions reductions.
Global climate finance flows have increased and financing channels have broadened over the past decade, but the report notes that average growth has slowed since 2018. The report adds with high confidence:
“Public and private finance flows for fossil fuels are still greater than those for climate adaptation and mitigation.”
It assesses that climate funding is “uneven” and has “developed heterogeneously across regions and sectors”, adding that the money falls short of what is needed to slash emissions and adapt to climate impacts.
There is enough global capital to close investment gaps, the report says, but “barriers” are preventing this funding being used instead for climate action.
Closing gaps and improving access to finance, alongside other actions, can “act as a catalyst for accelerating” climate action, the SPM says. The report builds on this, saying:
“Accelerated support from developed countries and multilateral institutions is a critical enabler to enhance mitigation and adaptation action and can address inequities in finance, including its costs, terms and conditions, and economic vulnerability to climate change.”
Many developing countries do not have enough financial resources for adaptation to help reduce associated economic and non-economic losses and damages, the report says.
The SPM outlines with high confidence that increasing access to finance can help tackle “soft”, avoidable adaptation limits and avert some of the rising risks of climate change. (See: What does the report say about adaptation?)
The “overwhelming majority” of climate finance is geared towards mitigation. But this still falls short, the SPM says, adding with medium confidence:
“Average annual modelled mitigation investment requirements for 2020 to 2030 in scenarios that limit warming to 2C or 1.5C are a factor of three to six greater than current levels, and total mitigation investments (public, private, domestic and international) would need to increase across all sectors and regions.”
Limited access to funding is listed as one of the key barriers to a number of actions including the adoption of low-emissions technology in developing countries.
Harmful impacts of climate change can further reduce a nation’s climate financial resources by causing losses and damages and also impeding economic growth. This adds to the financial constraints for adaptation, especially in developing and least developed countries.
The largest climate finance gaps and opportunities exist in developing countries, the report says, adding that more support is needed from developed nations and multilateral institutions to address inequities.
This could come in the form of larger public grants for climate funding “for vulnerable regions, e.g., in sub-Saharan Africa,” the report says. It adds that these would be cost-effective and have high social returns in terms of access to basic energy.
Reducing the barriers standing in the way of committing more money to climate action would require “clear signalling and support by governments” through actions such as decreasing the perceived risks of climate investments and increasing the returns, the SPM says.
Central banks, investors and other financial actors can change the “systemic underpricing of climate-related risks” and also reduce the “widening disparities” between the money available and the amount required, the SPM adds, noting:
“Public finance is an important enabler of adaptation and mitigation, and can also leverage private finance.”
Developed countries pledged to provide $100bn in climate funding each year by 2020 to help developing countries deal with climate change. The SPM notes that, as of 2018, finance levels were below this goal. (In 2021, Carbon Brief analysed why climate finance flows are falling short.)
According to the Earth Negotiations Bulletin, India, supported by Saudi Arabia and Brazil, requested a reference to this goal in a section on the adoption of low-emission technologies to highlight the finance gap for developing countries.
Tejal Kanitkar, India. Credit: IISD
The final report does reference the missed pledge elsewhere, but the text of low-emission technologies instead refers more broadly to the constraints of “limited finance”.
The SPM says that climate-resilient development – prioritising climate in all aspects of decision-making and policies – is aided by more international cooperation to improve access to finance and better align climate finance flows with the money required.
The report says faster global financial cooperation is key to aiding low-emission and just transitions. (A just transition is one in which workers and their communities are supported in the shift to a low-carbon economy, which is central to the idea of climate justice.) It can also address inequities in access to finance.
In order to scale-up financial flows, the report says there must be lower regulatory market barriers, a stronger alignment of public finance and more public funding in an effort to reduce the perceived risks of low-emission investments.
14. What are the co-benefits for the Sustainable Development Goals?
Comprising 17 goals, this “shared blueprint” for people and the planet recognises that ending poverty “and other deprivations” must accompany strategies that improve health, education, reduce inequality while combating climate change and protecting oceans and forests.
The synthesis report lays out how climate adaptation and mitigation actions can translate into co-benefits that aid countries’ efforts to meet their SDGs.
According to the report, both sets of actions have more potential synergies than potential trade-offs with the SDGs. This, however, depends on the scale and context of how mitigation and adaptation measures are implemented, the interactions between and within different sectors involved, cooperation between countries, governance, policy design and how these options are timed, sequenced and stringently deployed.
Ending “extreme poverty, energy poverty and providing decent living standards to all, consistent with sustainable development objectives…can be achieved without significant global emissions growth”, the report states with high confidence.
The report’s summary recognises that countries are at different levels of development, seeking to improve the well-being of people. With high confidence, it states:
“Development priorities among countries also reflect different starting points and contexts, and enabling conditions for shifting development pathways towards increased sustainability will therefore differ, giving rise to different needs.”
Nonetheless, many mitigation and adaptation systems can help countries meet their near-term development goals in energy, urban and land systems, the report says with high confidence.
Comanche Generating Station. Photo credit: Allen Best/Big Pivots
For instance, better air quality and improved health are some of the many co-benefits of deploying low-carbon energy systems, while urban mass transit powered by these systems can contribute to health, employment, energy security and “deliver equity”.
Conserving, protecting and restoring ecosystems, while managing them to help communities adapt to climate impacts, can help regions attain their food security and biodiversity conservation goals, the report says with high confidence.
In countries and regions that are highly dependent on fossil fuels – not just for energy, but revenues and jobs – mitigating risk calls for “just transition principles, processes and practices” and policies that promote economic and energy diversification, the SPM says with high confidence.
Mitigation actions that are embedded within a wider development context can, therefore, make for faster, deeper and wider emissions reductions, it states with medium confidence.
But to design “context-relevant” actions and plan for their implementation “requires considering people’s needs, biodiversity, and other sustainable development dimensions”, the report states with very high confidence.
Importantly, the report calls “effective governance” to limit potential trade-offs of some mitigation choices – such as the risks posed by large-scale afforestation and bioenergy projects to food systems, biodiversity, ecosystems and livelihoods, it says with high confidence.
Crucially, this requires “adequate institutional capacity at all levels” to safeguard against trade-offs.
Mitigation and adaptation actions taken together – accounting for trade-offs – can benefit not just human well-being, but deliver better ecosystem and planetary health, the report states with high confidence. Social safety nets and land restoration are examples that serve both adaptation and mitigation goals, with co-benefits for poverty reduction and food security.
However, there will be trade-offs, the report cautions. But these can be “evaluated and minimised” by giving weight to “capacity building, finance, technology transfer, governance, development, gender and social equity considerations with meaningful participation of local communities, Indigenous peoples and vulnerable populations”, it states with high confidence.
15. What does the report say about equity and inclusion?
“Equity remains a central element in the UN climate regime,” the SPM says. The report has a section dedicated to “equity and inclusion in climate change action”, which discusses how to ensure that those most vulnerable to the impacts of climate change can contribute to and benefit from climate mitigation and adaptation efforts.
The SPM says that “ambitious mitigation pathways imply large and sometimes disruptive changes in economic structure”. This can include a “shifting of income and employment” during the transition to low-emissions activities.
But the report has high confidence that “social safety nets” and “redistributive policies” that “shield the poor and vulnerable” can resolve trade-offs for a range of sustainable development goals, such as education, hunger, poverty, gender and energy access.
For example, it has high confidence that “while some jobs may be lost, low-emissions development can also open up opportunities to enhance skills and create jobs”. The report emphasises the importance of “broadening equitable access” to the relevant finance, technologies and governance.
It adds:
“Equity, inclusion, just transitions, broad and meaningful participation of all relevant actors in decision making at all scales enable deeper societal ambitions for accelerated mitigation, and climate action more broadly, and build social trust, support transformative changes and an equitable sharing of benefits and burdens”.
The report says that between 3.3 and 3.6 billion people are living in “contexts that are highly vulnerable to climate change”, where vulnerability is highest in “locations with poverty, governance challenges and limited access to basic services and resources, violent conflict and high levels of climate-sensitive livelihoods”.
It says that adaptation can be used to moderate the risks of climate change and the authors have high confidence that “adaptation progress is unevenly distributed with observed adaptation gaps”. The report adds:
“Present development challenges causing high vulnerability are influenced by historical and ongoing patterns of inequity such as colonialism, especially for many Indigenous Peoples and local communities.”
To effectively address adaptation gaps and avoid maladaptation, the report says that “meaningful participation and inclusive planning, informed by cultural values, Indigenous knowledge, local knowledge, and scientific knowledge can help”.
The report also notes that different countries have their own priorities for development, which give rise to differing needs.
For example, it says that “in several countries just transition commissions, task forces and national policies have been established”, while in others, the principles of a just transition need to be integrated into policies through “collective and participatory decision-making processes”.
This section of the report also discusses behavioural interventions. It has high confidence that “individuals with high socioeconomic status contribute disproportionately to emissions, and have the highest potential for emissions reductions”. It says there are many options for reducing emissions from this group, which can be supported by policies, infrastructure, and technology.
Meanwhile, it has high confidence that, for lower-income groups, “eradicating extreme poverty, energy poverty, and providing decent living standards to all in these regions in the context of achieving sustainable development objectives, in the near-term, can be achieved without significant global emissions growth”.
Xcel truck at Shoshone plant. Photo credit: Brent Gardner-Smith/Aspen Journalism
Click the link to read the article on the Big Pivots website (Allen Best):
Holy Cross Energy aims to distribute 100% emission-free electricity to its 55,000 members in the Aspen, Rifle, and Vail areas by 2030. How will it do that?
Tri-State Generation and Transmission, Colorado’s second largest utility, has a different but related problem. It wants to best use infrastructure associated with its coal-burning operations at Craig after the last unit closes before 2030.
One clue may lie in Pueblo. There a pilot program testing a new technology for long-duration energy storage will be deployed by Xcel Energy and Form Energy by the end of 2025. The new iron-air batteries will be able to use chemical processes to store electricity and then discharge it for up to 100 hours.
The new battery technology has been reported to be 10 times less expensive than lithium-ion batteries. Iron is abundant in the United States, and the batteries are non-flammable.
In announcing the pilot projects, Bob Frenzel, the chief executive of Xcel, said the 100-hour batteries at Pueblo and at a coal site in Minnesota “will strengthen the grid against normal day-to-day, week-to-week, and season-to-season weather variability, in addition to extreme weather events, including severe winter storms and polar vortex events.”
Duration of storage matters entirely as electric utilities add low-cost and emissions-free renewables. Short-duration storage, such as the lithium-ion batteries installed in conjunction with a new solar farm near Glenwood Springs in 2022, can help. They provide two to four hours of storage.
With 100 hours of storage, utilities can smooth the highs and the lows of renewables. Consider Uri, the week of cold in 2022 when wind on Colorado’s eastern plains ceased for several days. Utilities cranked up turbines burning natural gas that was suddenly in high demand. Consumers are still paying off those bills. Tri-State even resorted to burning oil.
Summers have brought inverse problems of spiking demand caused by heat. In 2021, it got so hot in Portland that electric lines for trains melted, and some people without air conditioning literally baked to death in apartments. Colorado regulators worry whether the state’s utilities can handle such weather extremes.
Iron-air batteries alone are unlikely to solve the intermittencies of renewable energy or the havoc produced by a warming and more erratic climate. This pilot project does represent a notable effort to explore whether they can be scaled.
“This is an exciting new frontier for energy storage in Colorado,” said Mike Kruger, chief executive of the Colorado Solar and Storage Association, a trade group of 275 members. “This announcement goes to show that when there is clear policy, American companies can innovate to meet the electric power sector’s needs.”
Holy Cross Energy has been diversifying its supplies, both locally and regionally, but still depends largely upon wholesale deliveries from Xcel. The Glenwood Springs-based cooperative in 2022 delivered 50% emissions free electricity but has a goal of 100% just seven years from now.
Sam Whelan, the vice president for finance at Holy Cross, said that increased reliability by Xcel will help Holy Cross reliably deliver electricity to its members.
Holy Cross has been investigating its own options—and has had conversations with Form Energy. It will look at many alternatives, including green hydrogen and pumped-storage hydro, each with problems but also promise.
“You have to start something, and you have to start in small increments as well,” says Whelan.
The solar industry, he also started small. “It was not that long ago that solar costs were significantly higher,” he observed. Now, solar has become competitive. “It will take these incremental storage projects to prove out and hopefully pave the way.”
Tri-State, at a recent meeting with stakeholders, also reported that iron-air storage technology was among several options for Craig being studied once the coal plants there close. Transmission lines already exist, capable of carrying renewable energy to the site to be stored – and then released as needed.
Xcel may have gleanings about how they will act at scale and be used to manage the grid by 2026.
Will these new batteries eliminate need for expensive natural gas plants designed for use to meet peak demands? Such plants are expensive to build, and they do produce emissions. Too soon to tell, says Robert Kenney, the president of Xcel Energy’s Colorado division.
“If we see success with this program, we will explore how we can expand it and scale it up further. But to what extent it will displace ‘peaker’ plants or any other technology, that would be the learning that we would expect to come out of the pilot itself. So stay tuned.”
Thirteenth annual Conservation in the West Poll reveals voters not willing to go backwards on conservation progress to address gas prices, cost of living, or water shortages
COLORADO SPRINGS—Colorado College’s 13th annual State of the Rockies Project Conservation in the West Poll released today [February 16, 2023] shows strong support for conservation policies among Westerners even as concerns around gas prices, cost of living, drought and water shortages remain high.
The poll, which surveyed the views of voters in eight Mountain West states (Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, Utah, and Wyoming), found support in the 70 to 90 percent range for conservation goals like protecting wildlife habitats and migration routes, ensuring healthier forests, preventing light pollution that blocks out the stars, and safeguarding drinking water.
From Bears Ears National Monument. Photo credit: Jonathan Thompson
82 percent of Westerners support achieving a national goal of conserving 30 percent of land and inland waters in America, and 30 percent of ocean areas, by the year 2030. Support for that proposal is up 9 percent since 2020, while opposition to the goal dropped by 5 percent during that time. In order to further conservation progress, 84 percent of Westerners support presidents continuing to use their ability to designate existing public lands as national monuments to maintain public access and protect the land and wildlife for future generations.
Voters express higher levels of concern than in the past over several issues that impact Western lifestyles. Asked what they consider to be extremely or very serious problems for their state, 65 percent of Westerners point to inadequate water supplies, 67 percent say drought, 69 percent say the low level of water in rivers, 78 percent name the rising cost of living, and 60 percent say the price of gasoline.
Those spiking concerns, however, are not dampening enthusiasm for conservation action across the West. Support remains high for a range of policies aimed at protecting land, water, air, and wildlife, including:
Highway 160 wildlife crossing 15 miles west of Pagosa Springs. Photo credit: Allen Best
85 percent support constructing wildlife crossing structures across major highways that intersect with known migration routes.
The tallest dunes in North America are the centerpiece of a diverse landscape of grasslands, wetlands, forests, alpine lakes and tundra at Great Sand Dunes National Park in Colorado. Photo credit: The Department of Interior
84 percent support creating new national parks, national monuments, and national wildlife refuges and Tribal protected areas to protect historic sites or areas of outdoor recreation.
Community solar garden in Arvada. Photo credit: Allen Best/Big Pivots
67 percent support gradually transitioning to 100 percent of energy being produced from clean, renewable sources like solar and wind over the next ten to fifteen years.
Hey, World! I’m Tye, and I’ve been hiking for about 10 years. Come join me on this hiking journey throughout the state of New York. To learn more about me: https://youtu.be/GH2NqOEWJoc. Photo credit: Hiking While Black
76 percent support directing funding to ensure adequate access to parks and natural areas for lower- income people and communities of color that disproportionately lack them.
Western San Juans with McPhee Reservoir in the foreground from the Anasazi Center Dolores
85 percent support ensuring Native American Tribes have greater input into decisions made about areas on national public lands that contain sites sacred or culturally important to their Tribe.
“This year voters in the West have a lot on their minds, but they are not willing to trade one priority for another,” said Katrina Miller-Stevens, Director of the State of the Rockies Project and an associate professor at Colorado College. “High gas prices, increasing costs of living, and water shortage concerns are not enough to move Westerners to reconsider their consistent support for conservation policies or seek out short-sighted solutions that put land and water at risk. In fact, people in the West want to continue our progress to protect more outdoor spaces.”
Dories at rest on a glorious Grand Canyon eve. Photo by Brian Richter
Locally, a variety of proposed conservation efforts are even more popular with in-state voters than they were when surveyed last year. In Arizona, 62 percent of voters support legislation to make permanent the current ban on new uranium and other mining on public lands surrounding the Grand Canyon. 90 percent of Coloradans agree with protecting existing public lands surrounding the Dolores River Canyon to conserve important wildlife habitat, safeguard the area’s scenic beauty, and support outdoor recreation. 84 percent of Montanans support enacting the Blackfoot Clearwater Stewardship Act to ensure hunting and fishing access, protect stream flows into the Blackfoot River, and add eighty thousand acres of new protected public lands for recreation areas, along with timber harvest and habitat restoration. In New Mexico, 88 percent of voters want to designate existing public lands in the Caja del Rio plateau as a national conservation area to increase protections for grasslands and canyons along the Santa Fe river and other smaller rivers flowing into the Rio Grande. 83 percent of Nevadans want to designate existing public lands in southern Nevada as the Spirit Mountain National Monument to ensure outdoor recreation access and help preserve sacred Native American sites.
Voters call for bold action on water conservation in line with heightened concerns
The level of concern among Westerners around water issues remains high in this year’s poll even amidst a notable uptick in winter precipitation across the West.
Colorado River “Beginnings”. Photo: Brent Gardner-Smith/Aspen Journalism
The Colorado River is held in high regard by voters in the states that rely on it. 86 percent say the Colorado River is critical to their state’s economy and 81 percent view it as an attraction for tourism and recreation. At the same time, 81 percent of voters say the Colorado River is at risk and in need of urgent action.
Concerns about water availability in the West translate into support for a variety of water conservation efforts, including:
95 percent support investing in water infrastructure to reduce leaks and waste. 88 percent support increasing the use of recycled water for homes and businesses.
87 percent support requiring local governments to determine whether there is enough water available before approving new residential development projects.
80 percent support providing financial incentives to homeowners and businesses to replace lawns and grassy areas with water-saving landscaping.
62 percent support prohibiting grass lawns for new developments and homes.
Rancher Bryan Bernal irrigates a field that depends on Colorado River water near Loma, Colo. Credit: William Woody
54 percent support providing financial incentives to farmers to temporarily take land out of production during severe water shortages.
Despite concerns over higher gas prices and cost of living, voters want a cleaner and safer energy future on public lands
In the face of higher gas prices and increased costs of living, Westerners still support proposals to limit the volume and impacts of oil and gas drilling on public lands.
The Four Corners methane hotspot is yet another environmental climate and public health disaster served to our community by industry. But now that we’ve identified the sources we can begin to hold those responsible accountable for cleaning up after themselves. The BLM methane rule and EPA methane rule are more clearly essential than ever. Photo credit: San Juan Citizens Alliance (2018)
91 percent support requiring oil and gas companies to use updated equipment and technology to prevent leaks of methane gas and other pollution into the air. 91 percent of voters support requiring oil and gas companies, rather than federal and state governments, to pay for all of the clean-up and land restoration costs after drilling is finished. 72 percent of voters support only allowing oil and gas companies the right to drill in areas of public land where there is a high likelihood to actually produce oil and gas.
Asked what should be the highest priority for meeting America’s energy needs, 65 percent of Westerners say it should be reducing our need for more coal, oil and gas by expanding the use of clean, renewable energy. That is compared to 32 percent who favor drilling and digging for more oil and gas wherever we can find it.
Given a choice of public lands uses facing lawmakers, 68 percent of voters prefer ensuring we protect water sources, air quality, and wildlife habitat while providing opportunities to visit and recreate on national public lands. By contrast, only 26 percent of voters would rather ensure we produce more domestic energy by maximizing the amount of national public lands available for responsible oil and gas drilling and mining.
This is the thirteenth consecutive year Colorado College gauged the public’s sentiment on public lands and conservation issues. The 2023 Colorado College Conservation in the West Poll is a bipartisan survey conducted by Republican pollster Lori Weigel of New Bridge Strategy and Democratic pollster Dave Metz of Fairbank, Maslin, Maullin, Metz & Associates. The survey is funded by the William and Flora Hewlett Foundation.
The poll surveyed at least 400 registered voters in each of eight Western states (AZ, CO, ID, MT, NV, NM, UT, & WY) for a total 3,413-voter sample, which included an over-sample of Black and Native American voters. The survey was conducted between January 5-22, 2023 and the effective margin of error is +2.4% at the 95% confidence interval for the total sample; and at most +4.9% for each state. The full survey and individual state surveys are available on the State of the Rockies website.
Colorado College is a nationally prominent four-year liberal arts college that was founded in Colorado Springs in 1874. The College operates on the innovative Block Plan, in which its 2,200 undergraduate students study one course at a time in intensive three and a half-week segments. For the past eighteen years, the college has sponsored the State of the Rockies Project, which seeks to enhance public understanding of and action to address socio-environmental challenges in the Rocky Mountain West through collaborative student-faculty research, education, and stakeholder engagement.
About Fairbank, Maslin, Maullin, Metz & Associates
Fairbank, Maslin, Maullin, Metz & Associates (FM3)—a national Democratic opinion research firm with offices in Oakland, Los Angeles and Madison, Wisconsin—has specialized in public policy oriented opinion research since 1981. The firm has assisted hundreds of political campaigns at every level of the ballot—from President to City Council—with opinion research and strategic guidance. FM3 also provides research and strategic consulting to public agencies, businesses and public interest organizations nationwide.
About New Bridge Strategy
New Bridge Strategy is a Colorado-based, woman-owned and operated opinion research company specializing in public policy and campaign research. As a Republican polling firm that has led the research for hundreds of successful political and public affairs campaigns we have helped coalitions bridging the political spectrum in crafting winning ballot measure campaigns, public education campaigns, and legislative policy efforts. New Bridge Strategy helps clients bridge divides to create winning majorities.
About Hispanic Access Foundation
Hispanic Access Foundation connects Latinos and others with partners and opportunities to improve lives and create an equitable society.
GEM is an interactive web-based decision support system that allows users to locate areas with high suitability for clean power generation and potential energy transmission corridors in the United States. Browse and download data layers, or create a custom suitability model to identify areas for energy development.
Click the link to read the article on the the Big Pivots website (Allen Best):
In Colorado’s energy transition, some work has advanced at a remarkable pace in the last 15 years. Other aspects are as perplexing now as in 2011 when Dave Bowden interviewed Matt Baker, then a Colorado public utilities commissioner, for a documentary film commemorating CRES’s accomplishments on its 15th anniversary.
Baker described a two-fold challenge. One was to achieve the legislative mandate of getting 30% of electricity from renewables while keeping the cost increase below 2%.
Check that box. In 2021, renewables provided 35% of Colorado’s electricity, according to the Energy Information Administration, even as costs of wind, solar and batteries continue to decline. And utilities now say they can achieve at least 70% by 2030 (and some aim for 100%).
With its sunny days and its windy prairies, Colorado has resources many states would envy. Plus, it’s nice to have NREL in your midst.
Clean energy technologies can and must ramp up even faster. At one time, the atmospheric pollution could be dismissed as unpleasant but worth the tradeoff. That debate has ended. The science of climate change is clear about the rising risks and unsavory outcomes of continuing this 200-year devotion to burning fossil fuels.
Big, big questions remain, though. Some are no more near resolution than they were in 2011 when Baker, who now directs the public advocates office at the California Public Utilities, identified the “desperate need to modernize the grid,” including the imperative for demand-side management.
Leave that box unchecked. Work is underway, but oh so much remains to be figured out.
For example, how much transmission do we need if we emphasize more dispersed renewable generation? Can we figure out the storage mechanisms to supplement them? Might we need fewer giant power lines from distant wind and solar farms? This debate is simmering, on the verge of boiling.
In buildings, the work is only beginning. Colorado has started, in part nudged by the host of laws adopted in 2021, among them the bill that Meillon had worked on for a decade.
John Avenson took a house with strong fundamentals, most prominently southern exposure, and tweaked it until he was confident that he could stub the natural gas line. Photo/Allen Best
Others had been working on the same issue in a different way. Consider John Avenson. Now retired, he was still working as an engineer at Bell Labs when he began retrofitting his house in Westminster to reduce its use of fossil fuels.
The house had a good foundation. It was built in the early 1980s in a program using designs created in partnership with SERI, the NREL precursor. It was part of a Passive Solar Parade of Homes in 1981. And unlike about 80% of houses in metro Denver according to the calculations of Steve Andrews, it faces south, allowing it to harvest sunshine as needed and minimizing the need for imported energy.
Avenson then tweaked and fussed over how to save energy here and then there. Finally, in 2017, he convinced himself that he no longer needed natural gas. He ordered the line stubbed.
To those who want to follow the same path, Avenson has been generous with his time. He can commonly be seen pitching in on other, mostly behind-the-scene roles, for CRES and affiliated events.
CRES’s membership is full of such individuals, people committed to taking action, whether in their own lives or in making the case why change must occur in our policies.
Graphic credit: The Nature Conservancy
But what about the carbon dioxide already in the atmosphere? Can it be mopped up just a bit? Certainly, it’s better to not emit emissions. But we’re cornered now. Focus is growing on ways to return carbon from the atmosphere into the soil. Revised and rewarded agricultural practices may be one way. That will be a component of a major bill in the 2023 Colorado General Assembly climate change docket.
This is also a topic that Larson, since his time in Africa after the Reagan administration short-sheeted the solar laboratory in Golden, has avidly promoted. In 2007, the idea got a name: biochar. It is one technique for restoring carbon to soils. Today, it remains an obtuse idea to most people. It may be useful to remember that a renewables-powered economy sounded weird to many people in 1996, if they thought about it at all.
CRES has been regaining its financial health. “Through disciplined and lean operations, we have been able to slowly grow our annual income to nearly $40,000 a year,” said Eberle, the board president at a 25th anniversary celebration in October. “We have a solid financial base to not only maintain our current programs but consider new opportunities.”
The question lingers for those deeply engaged in CRES about what exactly its role can be and should be.
Always, there are opportunities for informed citizens such as those who are the lifeblood of CRES. Mike Kruger made this point clear in a CRES presentation in October 2022. As the executive director of COSSA, he routinely contacts elected officials and their staff in Washington D.C.
“The same thing happens at the State Capitol,” he said. Two or three phone calls to a state legislator has been enough to bring to their attention a particular issue or even change their vote.
And that takes us to the big, big question: What exactly has CRES achieved in its 26 years?
In this history you have read about a few salient elements:
the shove of Xcel into accepting Colorado Green;
the passing of Amendment 37, which raised Colorado’s profile nationally and set the stage for the election of Bill Ritter on a platform of stepped-up integration of renewables;
the work in recent years to revamp the calculations used in evaluating alternatives to methane.
Teasing out accomplishments, connecting lines directly can be a difficult task. Perhaps instructive might be a sideways glance to other major societal changes. Much has been written about the civil rights movement after World War II that culminated in the landmark federal legislation of the mid-1960s.
There were individuals, most notably the Rev. Martin Luther King Jr. and, in some contexts, his key lieutenants, John Lewis and Jessie Jackson.
But there were others. Consider the march from Selma to Montgomery. There were strong-willed individuals such as Amelia Boynton Robinson and, at one point in the Selma story, the school children themselves who took up the cause as their parents and other elders hesitated.
Civil rights and the energy transition have differences. The former had a deep moral component that was not yet clearly evident in energy when CRES was founded in 1996. The seriousness of climate change was not at the same level then, although arguably it is now.
Now Colorado has emerged as a national leader in this energy transition. For that, CRES deserves recognition. It’s not a singular success. CRES has had teammates in this. But it can rightfully take credit.
Other installments in this series about the history of CRES:
Click the link to read the article on The Denver Post website (Nick Coltrain and Seth Klamann). Here’s an excerpt:
Clean air and eyes on water
[Steve] Fenberg said members are working on several bills to reduce ozone emissions and aiming to boost air quality in the state . First, officials need to separate out what is in state control and what isn’t, while also balancing that regulations come with economic and personal costs. Fenberg cited the temporary closure of the Suncor refinery specifically: It may lead to cleaner air for a few months, but it may also mean people already under the thumb of inflation may pay more for energy. Lawmakers will also continue to look at the oil and gas industry, though Fenberg said those details aren’t yet finished. He mentioned incentivizing the electrification of drill rigs to tamp down on pre-production drilling emissions as one likely effort. Regulators have also been working on new rules for energy production, a product of 2019’s Senate Bill 181, and lawmakers will be watching to see if it accomplishes what they wanted, he said.
“I want to be careful and make sure the appropriate things are at the regulatory side so that we’re not over-prescribing at the legislative level,” Fenberg said.
Water remains a defining aspect of life in the West, and Colorado’s water crisis remains as acute as ever. Fenberg called it “a bit of an existential threat” to the state’s economy and its communities. Conservation, drought resilience and infrastructure efforts will be big aims, though the legislative leaders did not have specific policies yet.
“One of the biggest frustrations when we talk about water quantity is certainly the diverse interests that come to the table,” McCluskie said. “This isn’t a Republican and Democrat issue, this is a Western Slope and eastern slope issue. It is an ag economy, a tourist economy and outdoor recreation economy interest.”
Right now, the goal is to convene stakeholders to find common ground across those sometimes disparate interests, she said. And the bevy of new lawmakers also need time to brush up on the dissertation-worthy topic of western water law. McCluskie said state Rep. Karen McCormick, who will chair the Agriculture, Water and Natural Resources Committee, has been putting together a “water boot camp” for her members.
Patty Limerick. Photo credit Volunteers for Outdoor Colorado.
Click the link to read the article on the Big Pivots website (Allen Best):
The organization grew and then decided to spread its wings. It didn’t work out, raising questions of how a group like CRES should operate. What it did do was expand with two new chapters in Colorado.
CRES has had its ups and downs, its time of growth and expanding influence and then times of retraction.
Annual conferences have been held but with some lengthy gaps. The first, held in 1998 at Snow Mountain Ranch, between Granby and Fraser, was regarded as a splendid retreat. However, CRES leaders decided it would be better to hold conferences in places more accessible to the broader public and with greater geographic diversity. Accordingly, the 2002 conference was held in Colorado Springs with Amory Lovins as the featured speaker. The next was in Montrose, followed by the University of Denver, with still others in Fort Collins, Pueblo, and then again in Montrose.
Remarks made by speakers at the conference in Steamboat Springs in June 2007 reveal the rapid change during the last 15 years.
Organizers had recruited Stan Lewandowski, then general manager of Intermountain Rural Electric Association (now called CORE Electric Cooperative) to explain himself. He was known for his embrace of coal and for his financial contribution to Pat Michaels, a climate scientist who argued global warming will cause relatively minor and even beneficial charges. Renewables, said Lewandowski, were expensive, and he refused to socialize their cost to the detriment of elderly people on fixed income.
Now, that same cooperative—under new leadership—is hurrying to get out of its ownership in what will likely be Colorado’s last operating coal plant, Comanche 3.
Chuck Kutscher, then an engineer at NREL (and now a member of the CRES policy committee), also spoke, stressing the importance of the “beef” of energy efficiency to the “sizzle” of renewables. Paul Bony, who was then with Delta-Montrose Electric Association, told about the 100 ground-source heat pumps whose installation he had overseen.
Keynote speaker at the 2007 conference in Steamboat Springs was Patty Limerick, a historian from the University of Colorado-Boulder, who talked about energy conversions of the past 200 years. She warned against expecting immediate change. Even adoption of fossil fuels, if “astonishing in its scale and scope of change,” did not arrive as “one, coherent sequential change.” Fossil fuels, she noted, had lifted women out of household drudgery.
And she left listeners to ponder this thought: “The most consequential question of the early 21st century is who controls the definition of progress.”
Membership in CRES grew from 200 to 2,000 during the 21st century’s first decade. Sheila Townsend, executive director from 2001 to 2011, deftly managed all of CRES’s events, including fundraising, the group’s annual conference, Tour of Solar Homes, and annual party, supported by well-staffed teams of volunteer members over the years.
The Tour of Solar Homes has been an annual event since the beginning of CRES—and an important money raiser, too. Starting in 1996, the tour was focused on Golden but then expanded to the Denver metro area under the umbrella of New Energy Colorado. The tours are part of ASES’s national network, conducted over many years, to showcase green-built and sustainable homes.
From its roots in Golden, driven largely by SERI/NREL employees who sought a greater public impact for renewables, CRES also added new chapters elsewhere in Colorado. Some had lasting power, others not so much. For example, chapters had been created in Durango and Montrose in the early 2000’s. They didn’t survive. The populations were relatively small, and the distances to other population centers too great.
The chapter founded in Pueblo in 2003 had greater success. Tom Corlett and Judy Fosdick founded SECRES (for South East) with the hope of advancing distributed generation and helping develop support for Amendment 37. In time, the chapter gravitated to Colorado Springs, where its current organizer Jim Riggins points with pride to outreach efforts with youngsters in local schools as well as some collaborations with the local military institutions. “Our goal is to inform and educate in a fashion as unbiased as we can and let people make their own decisions based on facts,” he says.
NCRES (for Northern) has cut a notable swath in Larimer County. Jim Manuel had been active in CRES in Jefferson County and other precursor groups in Denver, including the Energy Network, before moving to Loveland. There and in Fort Collins he found kindred spirits who would sometimes meet at restaurants, other times at Colorado State University.
Manuel says he began thinking that it would make sense to be formally affiliated with CRES in an organizational structure similar to that of the Colorado Mountain Club. That latter group has its largest membership in Denver but has chapters at various locations around Colorado. One advantage was avoiding the necessity of duplicating non-profit status by forming a different 501(c)(3).
Alex Blackmer was asked if his off-the-grid solar home in Redstone Canyon, west of Fort Collins, could be included in the 1998 solar tour. His friends who organized that event then started attending NCRES gatherings at the Odell Brewery.
“The meetings were always great networking events and gave me a range of valuable business contacts that have served me to this day,” says Blackmer, who later became a state board member. “In fact, I met my two current business partners through my NCRES interactions. We now a run a nation-wide solar financing company (Solaris Energy) that has been a player in the exponential growth of the solar industry in the last 10 years,” he says.
“I think that my work with NCRES and CRES added greatly to my ability to grow Solaris by making the personal connections and contacts necessary to put all the pieces together.”
Blackmer says that without CRES, he’s not sure Solaris would ever have grown into the successful business that it is. “And it would not have had the national impact that it is now having,” he adds.
Broad influences of NCRES and other chapters can be hard to document. Peter Eberle, the current chair of the state board of directors as well as the leader of NCRES, believes that NCRES, working in concert with other groups, has nudged Fort Collins toward its ambitions to redefine energy. The community’s energy deliberations have drawn national attention, sometimes eclipsing Colorado’s better-known university town.
Blackmer concurs, citing the “steady pressure from the bottom to move the city in the direction of more renewable energy.”
Wade Troxel, a mechanical engineering professor at Colorado State University who has been personally and professionally involved in pushing that transition, confirms being influenced by CRES programming. He sometimes attended NCRES meetings, occasionally asking questions. “I was very aware of NCRES,” says Troxell, who was mayor from 2015 to 2021.
The 501(c)(3) non-profit status for CRES is formally based in Fort Collins in conjunction with Colorado State University’s Powerhouse Energy Campus. That’s where postal mail goes.
A stumble, then a rebirth
Still sensitive more than a decade later is the 2010 decision to spread the organization’s wings by hiring a full-time director. In the eyes of at least some of its members, the organization tended to be “clubby.” Everybody knew everybody else, and the atmosphere was collegial.
But in terms of impact? Well, board members believed CRES could step up its game.
Carol Tombari was among the board members who voted to hire Tony Frank, the clear favorite because of his experience at the Rocky Mountain Farmers Union.
She describes the times around 2010 as difficult. Yes, there had been substantial wins: Colorado Green in 2001, Amendment 37 in 2004, and the 57 bills passed during the Ritter Administration. But public policy was a slog. Advocates were finding it difficult to make their case.
“We did not want to hire somebody who was like us, because we clearly had not succeeded,” says Tombari, now retired from NREL and living in Texas. “We needed somebody who had much more of an entrepreneurial approach than we did. Some of us were academics, some of us were scientists. We weren’t entrepreneurial.”
Tony Frank emerged as the clear favorite. He wanted an office, so a lease was negotiated for space at a cost of $3,000 per year in a former school in North Denver repurposed for non-profit office space. A salary of $55,000 per year was negotiated along with modest insurance and other benefits. The bill, including office space, for the new director came to $68,590 for his first year.
The director was to raise the profile of CRES in the Legislature and elsewhere. CRES was to become the go-to organization for renewable energy in Colorado.
CRES became a partner in creating what was then called the Denver Sustainability Park in the Five Points neighborhood. From his previous experiences with non-profit organizations, Frank was able to introduce CRES volunteers to key state legislators.
But the executive director—this is crucial—was required to figure out how to pay his or her salary. This happened, but not enough. Possibly a factor was that Frank was hired even as the effects of the 2009-2010 recession lingered. When he resigned in February 2012 after nearly two years at the helm, the treasury had drawn down to $59,000. He was replaced by a part-time executive director.
‘We all knew it was risky,” says Tombari. “We felt it was a risk worth taking. It just didn’t work out.”
What lessons can be drawn from this? The simplest takeaway is that CRES over-reached.
The deeper question, though, is what does it take to create an organization with impact? The education that has always been front-and-center of CRES has impact, and grassroots activism has impact. But volunteerism usually needs to be anchored by staff to achieve deeper leverage.
Michael Haughey arrived on the board in 2010 after the decision had largely been made to hire a full-time director. He says he counseled fellow members against the hiring without first creating a better plan to raise money.
“The expectation was that the new director would raise the profile of CRES and money will come. That was the hope, but it didn’t work.”
In a recent interview, he cited the Colorado chapter of the U.S. Green Building Council, which created a book of instruction on LEED certification. It sold nationally and continues to sell—creating the revenue to pay the salary of full-time director. With its arsenal of videos, CRES might now have something similar, he says.
Larry Christiansen, another board member at the time, applauds the effort to professionalize CRES and to add muscle to its mission. To be taken seriously, he says, an organization needs full-time staff working from offices.
While CRES temporarily elevated, it didn’t get far enough along to make a legitimate “ask” for funding. Neither the executive director nor board members felt comfortable in making that ask.
“We did not have a board that was able to go out and ask for money or bring money to the table,” he says. “To get an organization off the ground, you need some fundraisers on the board.”
Here’s a question to ponder:
So, why do some organizations immediately spread their wings and others do not? The comparison that may be most relevant is Boulder-based Southwest Energy Efficiency Project [SWEEP]. It was founded in 2001, five years after CRES. It now has a staff of 18 spread out across Colorado as well as other Southwestern states. SWEEP definitely gets invited to the table for policy discussions.
The difference?
Howard Geller, its founder, had previously been in Washington D.C., where he had established a reputation. That likely made fundraising easier.
Two new chapters
Distributed energy has been one theme for the transition to renewables. That has also been the model for CRES. From three chapters, CRES has grown to five strong chapters during the last decade
Boulder’s chapter, called BCRES, was organized in Boulder in 2014. Kirsten Frysinger, one of the three co-founders, had graduated in 2013 from the University of Colorado-Boulder with a masters’ degree in environmental studies. When Roger Alexander, then the board chair, asked for volunteers from the Boulder area to start the chapter, she enthusiastically raised her hand. She had a strong motivation.
“I needed to find work,’ says Frysinger. “I needed to network with people.”
It took a few years, but she succeeded. Having coffee with CRES member Leslie Glustrom, she learned of a job opening at the Southwest Energy Efficiency Project for an operations manager. She applied for the job at SWEEP and was hired.
The BCRES meetings, which were commonly attended by 50 to 100 people before covid, always begin with an invitation to job-seekers to announce themselves, their qualifications, and hopes. Job providers were then given time. At a September 2022 meeting, the first in-person gathering since covid, half of attendees were seeking jobs.
In Denver, MDCRES (for metro Denver) has become a significant player. A prominent figure there—and in the CRES policy and other groups—has been Jonathan Rogers. He arrived in Colorado in 2018 as an energy consultant. In that capacity he began seeking out professional groups. CRES emerged on that landscape. What he found was a refreshing change from Washington DC.
“It was all talk,” says Rogers of his time in Washington. “It was decades-long research and development, everybody was a consultant, and the only real buyer was the government. So we had the same conversations over and over again.”
Somewhat around the same time as Rogers joined CRES he took a job as the City of Denver’s representative in regulatory affairs. It was his job to build relationships with legislators and get immersed in affairs of the PUC, which operates in mostly arcane ways that can test the patience even of lawyers.
It’s one thing to pass a bill, he observes, but another yet to execute it. That, as the cliché goes, is where the rubber meets the road.
The covid pandemic caused MDCRES to shift its programming to online. Attendance jumped to 70 attendees, but then slackened in 2022 as other activities resumed. If convenient, online sessions deprive attendees the pleasure of face-to-face networking. CRES chapters altogether have been trying to strike the right balance.
Bill McKibben, right, conferring with Land Institute founder Wes Jackson at the 2019 Prairie Festival, has strongly motivated many, including some CRES members. Photo/Allen Best
In Jefferson County, Martin Voelker arrived to continue the thread of prior meetings at the Jefferson Unitarian Church. A native of Germany, Voelker had been a journalist before emigrating to the United States in 1997 with his wife, a college professor. In Boston, while his wife taught at the Massachusetts Institute of Technology, Voelker interviewed progressive speakers.
In 2004, the Voelker family moved to Golden where his wife had secured a professorship at the Colorado School of Mines. With the lower-priced real estate of Golden compared to that of Boston, there was enough financial comfort that Martin decided he did not need to chase a paycheck. Beginning in 2015, he began pouring his energy into assembling monthly programs for JCRES.
Voelker traces his epiphany, his desire to get more active, to the appearance in Boulder by Bill McKibben. Voelker had actually interviewed McKibben when in Boston, but he was galvanized by McKibben’s speech in Boulder during McKibben’s national tour following his compelling 2012 essay in Rolling Stone, “Global Warming’s Terrifying New Math.”
“Knowing stuff is fine and dandy, and if you don’t do anything about it, what is it really worth?” says Voelker.
Securing speakers has never been a problem for Voelker, given the proximity of NREL to other institutions in the Denver-Boulder area. He has filmed and edited dozens of the group’s events, building up a large on-line library of CRES and other presentations.
Former Colorado Gov. Bill Ritter interviews Amory Lovins at the Center of the New Energy Economy conference on Oct. 30, 2017. Photo/Maury Dobbie
Click the link to read the article on the Big Pivots website (Allen Best):
Bill Ritter Jr., the district attorney in Denver, knew nothing about energy when he decided to make a run at the governor’s mansion. He knew wind, though. He had grown up east of Aurora, near Buckley Air Force Base. “We leased a farm where we had cows, chickens, and horses. It was small. We started out with a section of ground that is near what is now Mississippi and Gun Club Road and then started farming a half-section on Sand Creek, north of Stapleton. It’s where the DIA employee parking lot is now,” he says.
“I hated wind,” says Ritter, recalling memories of driving tractors smothered in dust kicked up by spring winds.
Wolfson remembers meeting Ritter and his wife, Jeannie, as they were dining at a Mexican restaurant on Denver’s Santa Fe Drive called El Noa Noa. He debated whether it was proper to interrupt the dinner of the Ritters, but then boldly approached them and offered his knowledge. Wolfson remembers Jeannie Ritter poking the candidate in the ribs and telling him: “Accept that offer.”
And so they met a few days later, Wolfson the tutor, Ritter the eager and bright student who Wolfson says asked all the right questions. Ritter studied many issues. Eventually he produced a 54-page document of his plans under the heading of “The Colorado Promise.”
Ritter rode a narrow part of that promise to victory. He had conceived of an economy built around clean energy, dubbing it the “New Energy Economy.” But he didn’t make it central to his message until late in his campaign, in August or September of 2006.
The advertising team that Ritter had hired to create TV commercials wanted him in a small-town cafe talking with older people—well, older than he was then.
Colorado Green, located between Springfield and Lamar, was Colorado’s first, large wind farm. Photo/Allen Best
Ritter had a different idea. He wanted to be filmed standing in front of the 375-foot-tall wind turbines that John Stulp had shown him south of Lamar. The advertising team refused, he fired them, then hired a company who would make the commercial he wanted. His commercial about a new energy economy was a hit.
“That commercial resonated with people in a different way than other kinds of political commercials did,” says Ritter. He walked away with an easy victory in November 2006.
Ritter and like-minded legislators went on a tear. They upped the renewable portfolio standard for Xcel, this time with the consent of the utility, negotiating plans to replace coal with natural gas at two plants, and reformed what is now called the Colorado Oil &Gas Conservation Commission. During Ritter’s four years in office, 57 bills directly relating to clean energy or energy efficiency were passed. Just one bill had passed during the eight years of Ritter’s predecessor, Bill Owens. Later, during the eight years that John Hickenlooper was governor, the pace slackened again.
What role did CRES play in this? Wolfson had been an active member of CRES, but Ritter says he was not aware of CRES specifically until he had been governor for several years. Over time, he began to recognize familiar faces at bill signings and ribbon-cuttings of solar installations. In time, he connected the dots.
“The value of an organization like CRES is that in a world of creating policy, especially if you are ahead of yourself a bit, it’s good to have friends,” he says.
In 2009, Ritter signed HB08-1160, a law that extended solar net-metering to cooperative electrical utilities, at the farm near Niwot of Steve Szabo, a CRES member who later helped found the Boulder chapter.
While CRES provided the table for the bill signing, it was not commonly invited to the table the way Sierra Club or some environmental groups were. Still, Ritter sees an essential value in CRES and other such groups in advancing clean energy. “That’s one part of the policy puzzle, but it’s a very important part of it,” says Ritter of grassroots support.
Since 2007, when Ritter took office, wind capacity has taken off, growing from 290.8 megawatts to surpass 5,000 megawatts, accounting for nearly four-fifths of Colorado’s renewable energy production in 2021, according to the U.S. Energy Information Administration. Capacity in Colorado is projected to double during the next few years.
Xcel Energy took its defeats with Colorado Green and then Amendment 37 in stride. After that, it set out to meet elevated renewable levels, becoming a national role model. That hasn’t ended disagreements. Critics note that the company always figures out a way to produce handsome returns for its investors. That fact is unassailable. But it has become a different company from what it was early in the 21st century.
Next: CRES grew rapidly in membership and then decided to spread its wings. That didn’t turn out as hoped. Why? That’s a nagging, unanswered question.
Contracted workers clean mirrors at the Ivanpah Solar Project in Nipton, California. In 2017, the facility employed over 65 workers and created 2,600 jobs during it’s three year construction period. Dennis Schroeder/National Renewable Energy Laboratory via The High Country News
Click the link to read the article on the Big Pivots website (Allen Best):
The story so far.Triggered by the oil embargoes of the 1970s, Colorado became a forum for explorations of alternative futures for energy. One outcome was creation of a grassroots organization called the Colorado Renewable Energy Society was created in 1996. The organization aimed to provide education, but it also part of a team effort early on to show why Colorado’s largest utility should buy wind power at a project called Colorado Green.
The 2004 success of Amendment 37, Colorado’s first renewable energy mandate, was preceded by nearly a decade of failure. Mark Udall, a Democratic state legislator from Boulder County in the 1990s, had sponsored legislation that proposed to give consumers rights to choose clean energy. He couldn’t get it across the legislative finish line. After Udall went to Congress in 1998, his mission was taken up by what some might have seen an unlikely source, a Republican legislator from rural Colorado.
That legislator, Lola Spradley, the first female speaker of the Colorado House of Representatives, had grown up on a farm in Weld County. There, when crops failed, production royalties from “stripper” oil wells—those nearing the end of their productive life—paid the farm’s property taxes. She saw wind turbines being the equivalent of oil wells, a way to secure income for rural landowners in years of crop failures. Lehr says she told him that she also understood the power of a large monopoly because she had worked for AT&T when it was called “Ma Bell” in Colorado and enjoyed a monopoly on telecommunications. She said she understood irrational monopoly behavior toward suppliers and their general aversion to change.
Spradley, representing rural areas of southern Colorado, three times beginning in 2001 proposed the minimum renewable energy standard along with Democratic colleagues from Boulder County. Votes were narrow, but she always fell short.
Rick Gilliam, then with Western Resource Advocates, tells about rising frustration with the legislative process. But although popular accounts have always fingered Xcel Energy as the stick in the renewable mud, he tells a more nuanced story.
“Really it was the coops that stopped it,” he says. “And here’s the thing: It didn’t even apply to them. It would not have applied to any of the coops. They talked about how dangerous renewables would be. In fact, I remember a guy (likely the individual who then directed the Colorado Rural Electric Association) who testified during a committee hearing in the third year we made a run about this. He was arguing against rooftop solar. ‘If you pass this bill, people are going to die,’ he said. I almost laughed out loud, because it was so ludicrous to go to that extreme to try to scare people. I don’t think many of the legislators took him seriously. But it showed how worried and maybe even scared the coops were.”
Finally, that third year, Matt Baker—who was then head of Environment Colorado—proposed a back-up plan. If legislators said no again, then they would make their case directly to voters through a ballot initiative.
That’s what they did. They needed 68,000 signatures to get on the ballot. The allied environmental groups and CRES delivered 115,000. Baker and Gilliam became the most prominent public faces for the advocates.
Gilliam had a wealth of experience on several sides of the energy equation. His first job out of college was with the Federal Energy Regulatory commission in Washington D.C. After six years there, he was offered a position with the Public Service Co. He immediately fell in love with Colorado. He stayed with the company for 12 years and acquired an education in how investor-owned utilities operate and their relations with state regulators. In addition to energy efficiency and demand-management programs, he helped figure out how to shut down St. Vrain, then a trouble-plagued nuclear reactor, and replace it with natural gas-fired generation.
In 1993, he made another career move, this time going to work for Western Resource Advocates. His recruiter there was Eric Blank, who is now chairman of the Colorado Public Utilities Commission. Gilliam agreed to a year-long term that turned into 12.
During his time while still at Xcel he had also begun thinking about an alternative energy paradigm. A pivotal experience was leading a tour of Pawnee, the coal-fired power plant near Brush that began operations in 1984. He remembers the dirtiness of coal, wondering if there was a better way. Reading the works of Amory Lovins in Sierra Club bulletins and elsewhere, Gilliam became persuaded by solar energy in particular.
“I always thought it was the coolest technology. It is lovely because it has no moving parts. You just put it out there and it generates electricity.”
On the campaign trail that summer, Gilliam and others found a mostly receptive audience along the Front Range. Fort Collins, for example, had already adopted renewables requirement for its city utility, requiring that 15% of its power come from wind sources by 2015, double what was being proposed for Colorado.
In rural Colorado, the reception was mixed. Rocky Mountain Farmers Union favored the initiative, and the Farm Bureau opposed it.
For some audiences Spradley had a colorful analogy. She described the wind turbines as upside down oil wells. Her view was that it would “keep people on the farm.”
Later, Gilliam and other advocates learned that Xcel had had a strong conversation within its corporate ranks about what position to take. In the end, says Gilliam, the utility seems to have been persuaded by Tri-State Generation and Transmission, Colorado’s second largest utility, about the need for a united front.
“Don’t downplay their opposition too much,” he says. “But they didn’t feel internally near as strongly as Tri-State did.”
Advocates lined up 1,000 volunteers – including many members of CRES. Video scenes for the campaign commercials were provided by Dave Bowden, president of CRES in 2004, who led the group’s fundraising and voter education efforts for the ballot initiative.
Early polling showed 70% to 75% of Colorado voters favoring Amendment 37.
Advocates secured funding for $500,0000 (including $10,000 from CRES), mostly for TV commercials. Xcel, Tri-State, and Washington-based utility trade groups raised $1.5 million, outspending the advocates three to one. Had they started earlier, they might have defeated the initiative. It passed 53.4% to 46.6%. It was the nation’s first voter-initiated renewable-energy standard and a huge victory for CRES and Colorado’s clean energy champions.
Momentum was building: First Colorado Green, then Amendment 37.
What followed soon after was Colorado’s first gubernatorial campaign built on the premise of renewable energy. Its proponent? A one-time farm boy named Bill Ritter Jr.
Next: Next: Bill Ritter was in a tight race until he fired his advertising team and made a commercial that he wanted standing in front of the wind turbines in southeastern Colorado..
Colorado Green, located between Springfield and Lamar, was Colorado’s first, large wind farm. Photo/Allen Best
Click the link to read the article on the Big Pivots website (Allen Best):
In 2000, Colorado’s largest utility rejected a proposed wind farm near Lamar. Why? A team that included CRES fought back. The result: Colorado Green — followed by others.
The story so far.Triggered by the oil embargoes of the 1970s, Colorado became a forum for explorations of alternative futures for energy. Some of those involved in this conversation were natives, others drawn to the state by creation of the Solar Energy Research Institute, the precursor to NREL. Spurred by a national solar organization, a grassroots organization called the Colorado Renewable Energy Society was created in 1996.
The Public Service Co. of Colorado, a subsidiary of Xcel Energy, is a state-regulated investor-owned utility offering electricity and natural gas. In a model created by utility executive Samuel Insull early in the 20th century, Xcel and other investor-owned utilities operate as monopoly service providers but, in exchange, submit to state regulation.
In addition to exercising control over rates, Colorado regulators require the company to file an electric resource plan every three years and to acquire generation resources through competitive bidding. The plan Xcel filed in November 1999 was for new resources to be acquired from 2002 through 2004.
To meet that demand, Xcel planned to go to a familiar tool chest: natural gas. Colorado utilities in the 1990s had been ramping up natural gas generation in ever-larger configurations, a practice that was to continue into the first decade of the 21st century. Altogether, 5,195.5 megawatts of natural gas generating capacity was added in the 20-year period. Coupled with the new natural gas-fired generators, Xcel also planned very modest demand-side management programs. Absent from Xcel’s plans in 1999 was new wind generation.
Colorado from its earliest days of homesteading had windmills to pump water. Some were configured to generate small amounts of electricity. Then, in the 1980s and 1990s, wind developers began assessing the state’s wind resources. They found much to exploit.
By the late 1990s, Xcel had also dabbled in wind via a new program called Windsource. Customers had the opportunity, if they chose, to pay extra for “clean” wind energy. Their demand was met in the late 1990s first by Ponnequin Wind Farm, a project located along the Wyoming border north of Greeley, the state’s first commercial-scale wind farm. It had a capacity of 25.3 megawatts. It was followed by the 25-megawatt wind farm on the Peetz Table north of Sterling in 2001.
The program had been instigated as a result of prodding by CRES and other groups that included Environment Colorado, the Sierra Club, and the Roaring Fork Valley’s Community Office for Resource Efficiency, known as CORE.
Plenty more wind was available for development. Colorado’s steadiest, most reliable winds blow in the state’s southeastern corner, near the center of the Dust Bowl havoc of the 1930s. The “quality” of the wind—a word used with the prejudice of electrical production in mind – ranks very high. The state energy office had used U.S. Department of Energy funds and help from NREL to place a meteorology tower near Lamar, atop Signal Hill, to record wind velocities.
With those data in hand, a California-based wind company called Zond Systems created a proposal for a wind farm 22 miles south of Lamar. The company was later sold and became Enron Wind.
Xcel would have nothing to do with the proposal. Too costly, the company said in response to three repeated applications from Enron. The third time, renewable advocates discovered that Xcel had added $61 million to the bid price on the presumption of added costs for transmission and for integrating wind into the company’s electric operations. Those padded costs aside, the bid that Xcel had rejected was for electricity costing 3.2 cents per kilowatt-hour. That was lower in cost than all other of Xcel’s generating sources in Colorado aside from the small hydro plant along Interstate 70 at Georgetown Lake.
Lehr had taken note. Working pro bono on behalf of CRES, he set out to demonstrate why the PUC should order Xcel to properly consider the bid from southeastern Colorado.
One of the experts he tapped was Andrews, the former SERI contractor who had by then been studying energy for more than two decades. Andrews warned the PUC commissioners to be skeptical of Xcel’s predicted low prices for natural gas. Although he did much research before putting on his coat and tie to testify before the PUC commissioners, Andrews remembers being on shaky ground in his projections. In the short term, he was proven correct, though. Natural gas prices skyrocketed to $14.50 per million Btu in 2008. Xcel had predicted $3 or less. Xcel was correct for the longer term as fracking and other advanced drilling techniques produced a flood of cheap natural gas.
The second part of the case against Xcel came from Law and Water Fund of the Rockies, now called Western Resource Advocates. John Nielsen identified flaws in Xcel’s modeling of benefits of wind to Xcel’s generating fleet.
NREL researcher Michael Milligan provided the final evidence for the wind proposal. He testified to the improved skill in predicting wind capacity. That enhanced ability to predict wind made it easier to integrate it into electrical supplies.
The PUC commissioners were persuaded. They ordered Xcel to contract for power from the 108-turbine Colorado Green proposal.
When completed in 2004, Colorado Green was the fifth largest wind farm in the United States, capable of generating 162 megawatts. It was a huge victory for CRES and other clean energy advocates.
Since then it has been repowered with updated technology, enabling it to produce even more electricity. Even so, its production has been dwarfed by that of other, much larger wind projects that have become common in Colorado, including the 600-megawatt Rush Creek Wind Project between Limon and Colorado Springs.
Those wind farms have augmented tax revenues and added some long-term, well-paying jobs to struggling farm communities on Colorado’s eastern plains. Colorado Green, for example, paid $2 million a year in local property taxes upon its completion, and it has since been expanded and joined by other wind farms. In addition, the Emick family, on whose land Colorado Green sits, has been reported to have created a foundation to endow local improvements.
Governor Hickenlooper, John Salazar and John Stulp at the 2012 Drought Conference
Among the boosters of Colorado Green in Prowers County was John Stulp, then a county commissioner who also grew wheat on a nearby farm. Colorado Green has been what he says he expected.
“It’s been good for the tax base. It’s not a huge employer, but it’s good employment for the 10 or 12 who are on the operations and maintenance crews. They pay their bills. The county has gotten along with them reasonably well. They’re good corporate neighbors, so to speak, and it’s clean energy,” says Stulp, who led the Colorado Department of Agriculture for four years in the administration of Gov. Bill Ritter, then was a special water advisor to Gov. John Hickenlooper for eight years.
Colorado Green, the first major advocacy case for CRES, also opened the door to Amendment 37. It put Colorado on the national renewable map.
Next: Rejected at the Legislature, renewable advocates take their case directly to voters.
Northern California has some of the strongest offshore winds in the U.S., with immense potential to produce clean energy. But it also has a problem. Its continental shelf drops off quickly, making building traditional wind turbines directly on the seafloor costly if not impossible.
Once water gets more than about 200 feet deep – roughly the height of an 18-story building – these “monopile” structures are pretty much out of the question.
A solution has emerged that’s being tested in several locations around the world: wind turbines that float.
In California, where drought has put pressure on the hydropower supply, the state is moving forward on a plan to develop the nation’s first floating offshore wind farms. On Dec. 7, 2022, the federal government auctioned off five lease areas about 20 miles off the California coast to companies with plans to develop floating wind farms. The bids were lower than recent leases off the Atlantic coast, where wind farms can be anchored to the seafloor, but still significant, together exceeding US$757 million.
So, how do floating wind farms work?
Three main ways to float a turbine
A floating wind turbine works just like other wind turbines – wind pushes on the blades, causing the rotor to turn, which drives a generator that creates electricity. But instead of having its tower embedded directly into the ground or the seafloor, a floating wind turbine sits on a platform with mooring lines, such as chains or ropes, that connect to anchors in the seabed below.
These mooring lines hold the turbine in place against the wind and keep it connected to the cable that sends its electricity back to shore.
Most of the stability is provided by the floating platform itself. The trick is to design the platform so the turbine doesn’t tip too far in strong winds or storms.
Three of the common types of floating wind turbine platform. Josh Bauer/NREL
There are three main types of platforms:
A spar buoy platform is a long hollow cylinder that extends downward from the turbine tower. It floats vertically in deep water, weighted with ballast in the bottom of the cylinder to lower its center of gravity. It’s then anchored in place, but with slack lines that allow it to move with the water to avoid damage. Spar buoys have been used by the oil and gas industry for years for offshore operations.
Semisubmersible platforms have large floating hulls that spread out from the tower, also anchored to prevent drifting. Designers have been experimenting with multiple turbines on some of these hulls.
Tension leg platforms have smaller platforms with taut lines running straight to the floor below. These are lighter but more vulnerable to earthquakes or tsunamis because they rely more on the mooring lines and anchors for stability.
Each platform must support the weight of the turbine and remain stable while the turbine operates. It can do this in part because the hollow platform, often made of large steel or concrete structures, provides buoyancy to support the turbine. Since some can be fully assembled in port and towed out for installation, they might be far cheaper than fixed-bottom structures, which require specialty vessels for installation on site.
The University of Maine has been experimenting with a small floating wind turbine, about one-eighth scale, on a semisubmersible platform with RWE, one of the winning bidders. AP Photo/Robert F. Bukaty
Floating platforms can support wind turbines that can produce 10 megawatts or more of power – that’s similar in size to other offshore wind turbines and several times larger than the capacity of a typical onshore wind turbine you might see in a field.
Why do we need floating turbines?
Some of the strongest wind resources are away from shore in locations with hundreds of feet of water below, such as off the U.S. West Coast, the Great Lakes, the Mediterranean Sea and the coast of Japan.
Some of the strongest offshore wind power potential in the U.S. is in areas where the water is too deep for fixed turbines, including off the West Coast. NREL
The U.S. lease areas auctioned off in early December cover about 583 square miles in two regions – one off central California’s Morro Bay and the other near the Oregon state line. The water off California gets deep quickly, so any wind farm that is even a few miles from shore will require floating turbines.
Once built, wind farms in those five areas could provide about 4.6 gigawatts of clean electricity, enough to power 1.5 million homes, according to government estimates. The winning companies suggested they could produce even more power.
But getting actual wind turbines on the water will take time. The winners of the lease auction will undergo a Justice Department anti-trust review and then a long planning, permitting and environmental review process that typically takes several years.
Globally, several full-scale demonstration projects with floating wind turbines are already operating in Europe and Asia. The Hywind Scotland project became the first commercial-scale offshore floating wind farm in 2017, with five 6-megawatt turbines supported by spar buoys designed by the Norwegian energy company Equinor.
While floating offshore wind farms are becoming a commercial technology, there are still technical challenges that need to be solved. The platform motion may cause higher forces on the blades and tower, and more complicated and unsteady aerodynamics. Also, as water depths get very deep, the cost of the mooring lines, anchors and electrical cabling may become very high, so cheaper but still reliable technologies will be needed.
But we can expect to see more offshore turbines supported by floating structures in the near future.
This article was updated with the first lease sale.
The global energy crisis is driving a sharp acceleration in installations of renewable power, with total capacity growth worldwide set to almost double in the next five years, overtaking coal as the largest source of electricity generation along the way and helping keep alive the possibility of limiting global warming to 1.5 °C, the IEA says in a new report.
Energy security concerns caused by Russia’s invasion of Ukraine have motivated countries to increasingly turn to renewables such as solar and wind to reduce reliance on imported fossil fuels, whose prices have spiked dramatically. Global renewable power capacity is now expected to grow by 2 400 gigawatts (GW) over the 2022-2027 period, an amount equal to the entire power capacity of China today, according to Renewables 2022, the latest edition of the IEA’s annual report on the sector.
This massive expected increase is 30% higher than the amount of growth that was forecast just a year ago, highlighting how quickly governments have thrown additional policy weight behind renewables. The report finds that renewables are set to account for over 90% of global electricity expansion over the next five years, overtaking coal to become the largest source of global electricity by early 2025.
“Renewables were already expanding quickly, but the global energy crisis has kicked them into an extraordinary new phase of even faster growth as countries seek to capitalise on their energy security benefits. The world is set to add as much renewable power in the next 5 years as it did in the previous 20 years,” said IEA Executive Director Fatih Birol. “This is a clear example of how the current energy crisis can be a historic turning point towards a cleaner and more secure energy system. Renewables’ continued acceleration is critical to help keep the door open to limiting global warming to 1.5 °C.”
The war in Ukraine is a decisive moment for renewables in Europe where governments and businesses are looking to rapidly replace Russian gas with alternatives. The amount of renewable power capacity added in Europe in the 2022-27 period is forecast to be twice as high as in the previous five-year period, driven by a combination of energy security concerns and climate ambitions. An even faster deployment of wind and solar PV could be achieved if EU member states were to rapidly implement a number of policies, including streamlining and reducing permitting timelines, improving auction designs and providing better visibility on auction schedules, as well as improving incentive schemes to support rooftop solar.
Beyond Europe, the upward revision in renewable power growth for the next five years is also driven by China, the United States and India, which are all implementing policies and introducing regulatory and market reforms more quickly than previously planned to combat the energy crisis. As a result of its recent 14th Five-Year Plan, China is expected to account for almost half of new global renewable power capacity additions over the 2022-2027 period. Meanwhile, the US Inflation Reduction Act has provided new support and long-term visibility for the expansion of renewables in the United States.
Crews install solar panels on top of Denver Water’s administration building in 2019. Photo credit: Denver Water
Utility-scale solar PV and onshore wind are the cheapest options for new electricity generation in a significant majority of countries worldwide. Global solar PV capacity is set to almost triple over the 2022-2027 period, surpassing coal and becoming the largest source of power capacity in the world. The report also forecasts an acceleration of installations of solar panels on residential and commercial rooftops, which help consumers reduce energy bills. Global wind capacity almost doubles in the forecast period, with offshore projects accounting for one-fifth of the growth. Together, wind and solar will account for over 90% of the renewable power capacity that is added over the next five years.
Cheyenne Ridge, located between Burlington and Cheyenne Wells, near the Kansas border, is one of many wind projects on Colorado’s eastern plains. Soon, new transmission will enable far more wind and solar projects. Photos/Allen Best Photo credit: Allen Best/The Mountain Town News
The report sees emerging signs of diversification in global PV supply chains, with new policies in the United States and India expected to boost investment in solar manufacturing by as much as USD 25 billion over the 2022-2027 period. While China remains the dominant player, its share in global manufacturing capacity could decrease from 90% today to 75% by 2027.
Total global biofuel demand is set to expand by 22% over the 2022-2027 period. The United States, Canada, Brazil, Indonesia and India make up 80% of the expected global expansion in biofuel use, with all five countries having comprehensive policies to support growth.
The report also lays out an accelerated case in which renewable power capacity grows a further 25% on top of the main forecast. In advanced economies, this faster growth would require various regulatory and permitting challenges to be tackled and a more rapid penetration of renewable electricity in the heating and transport sectors. In emerging and developing economies, it would mean addressing policy and regulatory uncertainties, weak grid infrastructure and a lack of access to affordable financing that are hampering new projects.
Worldwide, the accelerated case requires efforts to resolve supply chain issues, expand grids and deploy more flexibility resources to securely manage larger shares of variable renewables. The accelerated case’s faster renewables growth would move the world closer to a pathway consistent with reaching net zero emissions by 2050, which offers an even chance of limiting global warming to 1.5 °C.
Part of the problem was evident at COP27, the United Nations climate conference in Egypt.
While nations’ climate negotiators were successfully fighting to “keep 1.5 alive” as the global goal in the official agreement, reached Nov. 20, 2022, some of their countries were negotiating new fossil fuel deals, driven in part by the global energy crisis. Any expansion of fossil fuels – the primary driver of climate change – makes keeping warming under 1.5 C (2.7 Fahrenheit) compared to pre-industrial times much harder.
Attempts at the climate talks to get all countries to agree to phase out coal, oil, natural gas and all fossil fuel subsidies failed. And countries have done little to strengthen their commitments to cut greenhouse gas emissions in the past year.
But all signs now point toward a scenario in which the world will overshoot the 1.5 C limit, likely by a large amount. The World Meteorological Organization estimates global temperatures have a 50-50 chance of reaching 1.5C of warming, at least temporarily, in the next five years.
We know from the reconstruction of historical climate records that, over the past 12,000 years, life was able to thrive on Earth at a global annual average temperature of around 14 C (57 F). As one would expect from the behavior of a complex system, the temperatures varied, but they never warmed by more than about 1.5 C during this relatively stable climate regime.
Today, with the world 1.2 C warmer than pre-industrial times, people are already experiencing the effects of climate change in more locations, more forms and at higher frequencies and amplitudes.
Climate model projections clearly show that warming beyond 1.5 C will dramatically increase the risk of extreme weather events, more frequent wildfires with higher intensity, sea level rise, and changes in flood and drought patterns with implications for food systems collapse, among other adverse impacts. And there can be abrupt transitions, the impacts of which will result in major challenges on local to global scales. https://www.youtube.com/embed/MR6-sgRqW0k?wmode=transparent&start=0 Tipping points: Warmer ocean water is contributing to the collapse of the Thwaites Glacier, a major contributor to sea level rise with global consequences.
Steep reductions and negative emissions
Meeting the 1.5 goal at this point will require steep reductions in carbon dioxide emissions, but that alone isn’t enough. It will also require “negative emissions” to reduce the concentration of carbon dioxide that human activities have already put into the atmosphere.
Carbon dioxide lingers in the atmosphere for decades to centuries, so just stopping emissions doesn’t stop its warming effect. Technology exists that can pull carbon dioxide out of the air and lock it away. It’s still only operating at a very small scale, but corporate agreements like Microsoft’s 10-year commitment to pay for carbon removed could help scale it up.
A report in 2018 by the Intergovernmental Panel on Climate Change determined that meeting the 1.5 C goal would require cutting carbon dioxide emissions by 50% globally by 2030 – plus significant negative emissions from both technology and natural sources by 2050 up to about half of present-day emissions.
A direct air capture project in Iceland stores captured carbon dioxide underground in basalt formations, where chemical reactions mineralize it. Climeworks
A recent report by the United Nations Environment Program highlights the shortfalls. The world is on track to produce 58 gigatons of carbon dioxide-equivalent greenhouse gas emissions in 2030 – more than twice where it should be for the path to 1.5 C. The result would be an average global temperature increase of 2.7 C (4.9 F) in this century, nearly double the 1.5 C target.
Given the gap between countries’ actual commitments and the emissions cuts required to keep temperatures to 1.5 C, it appears practically impossible to stay within the 1.5 C goal.
Global emissions aren’t close to plateauing, and with the amount of carbon dioxide already in the atmosphere, it is very likely that the world will reach the 1.5 C warming level within the next five to 10 years.
With current policies and pledges, the world will far exceed the 1.5 C goal. Climate Action Tracker
How large the overshoot will be and for how long it will exist critically hinges on accelerating emissions cuts and scaling up negative emissions solutions, including carbon capture technology.
At this point, nothing short of an extraordinary and unprecedented effort to cut emissions will save the 1.5 C goal. We know what can be done – the question is whether people are ready for a radical and immediate change of the actions that lead to climate change, primarily a transformation away from a fossil fuel-based energy system.
Click the link to read the guest column on The Guardian website (Greta Thunberg). Here’s an excerpt:
Governments may say they’re doing all they can to halt the climate crisis. Don’t fall for it – then we might still have time to turn things around
Maybe it is the name that is the problem. Climate change. It doesn’t sound that bad. The word “change” resonates quite pleasantly in our restless world. No matter how fortunate we are, there is always room for the appealing possibility of improvement. Then there is the “climate” part. Again, it does not sound so bad. If you live in many of the high-emitting nations of the global north, the idea of a “changing climate” could well be interpreted as the very opposite of scary and dangerous. A changing world. A warming planet. What’s not to like?
Perhaps that is partly why so many people still think of climate change as a slow, linear and even rather harmless process. But the climate is not just changing. It is destabilising. It is breaking down. The delicately balanced natural patterns and cycles that are a vital part of the systems that sustain life on Earth are being disrupted, and the consequences could be catastrophic. Because there are negative tipping points, points of no return. And we do not know exactly when we might cross them. What we do know, however, is that they are getting awfully close, even the really big ones. Transformation often starts slowly, but then it begins to accelerate.
The German oceanographer and climatologist Stefan Rahmstorf writes: “We have enough ice on Earth to raise sea levels by 65 metres – about the height of a 20-storey building – and, at the end of the last ice age, sea levels rose by 120 metres as a result of about 5C of warming.” Taken together, these figures give us a perspective on the powers we are dealing with. Sea-level rise will not remain a question of centimetres for very long.
The Greenland ice sheet is melting, as are the “doomsday glaciers” of west Antarctica. Recent reports have stated that the tipping points for these two events have already been passed. Other reports say they are imminent. That means we might already have inflicted so much built-in warming that the melting process can no longer be stopped, or that we are very close to that point. Either way, we must do everything in our power to stop the process because, once that invisible line has been crossed, there might be no going back. We can slow it down, but once the snowball has been set in motion it will just keep going…
“This is the new normal” is a phrase we often hear when the rapid changes in our daily weather patterns – wildfires, hurricanes, heatwaves, floods, storms, droughts and so on – are being discussed. These weather events aren’t just increasing in frequency, they are becoming more and more extreme. The weather seems to be on steroids, and natural disasters increasingly appear less and less natural. But this is not the “new normal”. What we are seeing now is only the very beginning of a changing climate, caused by human emissions of greenhouse gases. Until now, Earth’s natural systems have been acting as a shock absorber, smoothing out the dramatic transformations that are taking place. But the planetary resilience that has been so vital to us will not last for ever, and the evidence seems to suggest more and more clearly that we are entering a new era of more dramatic change.
Climate change has become a crisis sooner than expected. So many of the researchers I’ve spoken to have said that they were shocked to witness how quickly it is escalating.
A new progress report on Colorado’s greenhouse gas emission reductions shows the state is not on track to meet key goals. And anyone could have seen it coming.
The goals are set by statute, yet state officials haven’t taken climate action with sufficient seriousness to do right by the law, let alone public health and the planet. One hopes the new report inspires urgent action, though state officials have approached the climate emergency with a maddening combination of strong rhetoric and weak action for years.
Colorado residents will pay the price.
State lawmakers three years ago enacted House Bill 19-1261, a landmark achievement that requires the state to reduce greenhouse gas pollution compared to 2005 levels by goals of 26% by 2025, 50% by 2030 and 90% by 2050. As part of the effort to meet those targets, the Colorado Air Quality Control Commission in 2020 established a regime to track and ensure progress on emission reductions. It set targets for a handful of sectors that are to blame for the most emissions, including electricity generation, oil and gas production, transportation, and residential and commercial building energy use.
The state has since made some notable strides toward hitting the targets. State law now requires electric utilities to file clean energy plans and work to reduce emissions. While renewable energy is becoming much cheaper to produce, and market forces rather than state action has much to do with the green transition, Colorado’s last coal plant is expected to close by the beginning of 2031, and utilities in the state are expected to see a roughly 80% reduction in emissions by 2030.
In 2019, the state adopted a zero-emission vehicle standard that requires an increased percentage of cars available for sale in Colorado to be electric-powered. The modest measure, which does not require drivers to actually buy electric cars, is expected to boost from 2.6% three years ago to 6.2% in 2030 the proportion of zero-emission vehicles sold in Colorado.
Officials recently enacted standards that require state and local transportation planners to meet a series of greenhouse gas reduction targets. And during the most recent legislative session, the General Assembly enacted a package of climate-friendly measures, the largest climate investment being a $65 million grant program to help school districts buy electric buses.
But for every climate advance in Colorado there’s often a planet-threatening failure.
As Newsline’s Chase Woodruff reported last year, the administration of Gov. Jared Polis abandoned one of its own top climate-action priorities, an initiative called the Employee Traffic Reduction Program, which would have required big Denver-area businesses to reduce the number of their employees commuting in single-occupant vehicles. The initiative was dropped following “intense opposition from business groups and conservatives, many of whom spread misinformation and conspiracy theories,” Woodruff reported.
Earlier this year the administration frustrated environmentalists again when it delayed adoption of an Advanced Clean Trucks rule, which would impose emissions standards on medium- and heavy-duty vehicles.
This is all aligns with the governor’s insistence on a “market-driven transition” to renewable energy and a preference for voluntary industry action.
Is it any surprise then that the transportation sector accounts for Colorado’s most grievous instance of greenhouse gas negligence? What makes this especially troubling is that, with all those internal combustion engines buzzing around Colorado roads, transportation is the state’s single largest source of greenhouse gas emissions.
“Additional strategies for reducing emissions from the transportation sector will be needed” to meet state targets, the recent progress report concludes.
Emissions from transportation in Colorado have in fact grown in recent years, contributing greatly to the state’s overall off-track status.
The average temperature in Colorado keeps trending up. Denver this year experienced its third-hottest summer on record. The city’s four hottest summers have occurred in the last 10 years, and 3 of 4 of its hottest summers have occurred in the last three years.
Climate change is contributing to the aridification of the Southwest, it’s depleting water resources and it’s fueling more frequent and ferocious wildfires. It’s killing people, and it’s getting worse.
Polis, a Democrat, sits in the governor’s chair, so he shoulders the most responsibility, but Republicans would no doubt exacerbate the crisis were they in his position. Heidi Ganahl, the Republican nominee for Colorado governor, recently released her proposed transportation policy, which is almost entirely about investing in highways and almost exhaustively dismissive of climate change.
State officials, to safeguard the wellbeing of present and future generations of Coloradans, must take urgent steps to meet the 2025 emissions reduction targets. The progress report shows they’re failing to do so.
The downtown Denver skyline from Arvada. Photo credit: Allen Best/Big Pivots
Click the link to read the article on the Big Pivots website (Allen Best):
To be very clear, this is the biggest energy story of the year in Colorado, in my read.
State legislators in 2021 adopted several laws that will, in various ways, begin squeezing greenhouse gas emissions from buildings.
Now comes the implementation as the three commissioners from the Public Utilities Commission do their required public engagement in meetings held in various locations in Colorado. All available evidence suggests to me that this will come close to fist-swinging before it’s all done, at least of the wordy type. From what I hear, it already has.
I attended the second of the six meetings, the one at Montbello Community Center in Denver. It was a bilingual meeting structure designed for consumption by people who had mostly never heard of the PUC much less clean heat plans.
In Montrose a week later, people had heard of the clean heat plans – or least that an effort was underway to remove natural gas from buildings. According to a report in the Montrose Press, many were not in the least bit happy. “Public Utilities Commission gets an earful over Clean Heat Plans,” was the headline.
SB 21-264, which we’ll call the clean-heat law, requires Colorado’s four privately owned natural gas utilities – Xcel Energy, Black Hills Energy, Atmos and Colorado Natural Gas – to reduce greenhouse gases 4% by 2025 and then 22% by 2030. This is compared to emissions of 2015.
How can they do this? The law provides four ways for the utilities to do so in the heat-clean plans they must submit:
1) Demand-side management programs, especially including improved energy efficiency.
2) Beneficial electrification, meaning that gas use in buildings for space and hot water heating is replaced by electricity. One way of doing that is through addition of air-source heat pumps or, in original construction, ground-source heat pumps.
3) Improved efforts to reduce methane leaks from the natural gas infrastructure.
3) Recovered methane, such as from landfills, to supplement the methane extracted from wells;
4) Green hydrogen, which means made from renewable resources and after (but not natural gas);
5) Pyrolysis of tires, the recycling of tires to extract heat and energy, as is being considered at Fort Morgan.
The latter two are likely more difficult than the first three.
The PUC commissioners have until December to draw up the rules governing the review of these clean-heat plans.
I see four very, very big issues here:
First, this is a lot of work in a short time. “A heavy lift for utilities,” John Gavan, the PUC commissioner who presided at the Montrose meeting, said.
A Black Hills representative at the Montrose meeting said that the required reduction coming on top of demand growth means that instead of a 4% reduction it’s more like a 25% reduction. Nigh on to impossible, said Mike Harrigan, the Black Hills rep.
Second, the gas utilities are being required to radically change their business models and, in the case of three of them, to essentially make themselves less relevant. Xcel Energy will sell more electricity as it sells less gas. For Black Hills, which sells both gas and electricity, the trade-off is not as easy. It sells gas in Aspen, for example, but not electricity.
One of the attendees at Montrose summarized it in this way: “Let me get this straight,” said David Combs, speaking to the Black Hills Energy representatives. “The products you sell, you make money on, you’re trying to reduce and you’re giving people money to use less of it?”
There always has been a strange tradeoff between regulated utilities. They enjoy monopolies in their service territory in return for regulation. This was once reliable money. Utilities are now being required to be far more inventive.
Third, builders and real estate developers have been enjoying a subsidy as they build new subdivisions, the gas lines that are laid being subsidized by existing natural gas customers. At the end of the day, this may be the defining issue. High-spirited filings with the PUC began in December 2021.
Fourth, there are equity issues here as we squeeze out natural gas, replacing it with electricity. Who will pay for the aging natural gas systems? Like so many things, it’s likely to be those who can least afford to pay.
The meeting in the Denver neighborhood of Montbello was conducted in both Spanish and English. Photo/Allen Best
I mentioned the Montbello meeting. It was designed to reach out to an area that met the definition of a disproportionately impacted community. I can’t disagree, but I must say that I felt very marginalized. I struggle to hear well normally, and the choice of room configuration left me with my back to the speakers and trying — and almost entirely failing — to hear the English translation of what was being said in Spanish. My impression was that the meeting was designed with the intent of honoring the law, and it did achieve that. But one meeting alone will not achieve the real purpose with this particular group.
A meeting in Grand Junction was somewhat boisterous, I heard, which did not surprise me. The first filings of opposition to clean-heat plans in the PUC docket in this case were submitted by real-estate agents and others from the Grand Valley and Montrose. Weeks later they started arriving from places like Aurora.
Again, as Gavan identified in the Montrose meeting, the key issue here is the subsidy for gas lines to homebuilders. Nobody likes to lose their subsidy.
Sandy Head, executive of the Montrose County Economic Development Corp. told the Press that the cost of extending a gas line to a new house was previously $250 to $300 but will now cost $800.
This led to charges that it would become too expensive to live in a place like Delta County – which, with the exception of now pricey Paonia, remains one of Colorado’s least expensive places to live west of I-25.
Also balled up into this issue is the high cost of natural gas and the failure of Xcel Energy to adequately prepare itself for what happened in February 2021. Xcel ended up paying $600 million extra for high-priced natural gas. But there’s also the issue of Texans going without power – which some people, apparently, still think can be blamed on the dependency on wind turbines. (It was a part of the problem, but only a small part).
“We’re not going to shut off fossil fuel generation in the form of gas overnight,” Gavan replied, as per the Montrose Press account. “No, our plan is to add another gigawatt of combustion technology to back up renewables. It’s a balancing mix. As we transition, the resource mix will change. It will become very different, more intelligent.”
Most of the $9-$10 billion that Xcel Energy will spend in the next few years will be spent on Colorado’s eastern plains. Why is this such a big deal for Colorado?
Click the image to go to Xcel’s project page and the interactive map.
Colorado will soon embark on a change with few rivals in the last 100 years. Think of the dismantling of geography by construction of Interstate 70 through the tunnels, over Vail Pass, and through Glenwood Canyon. Think of Denver International Airport. Think of the arrival of electricity to farms and small towns in the 1930s and 1940s.
Within a decade, Xcel Energy, the state’s largest electrical utility, will retire all its coal plants, convert one to burn natural gas, and add massive amounts of wind on Colorado’s eastern plains and solar generation, some of it in the Western Slope’s Grand Valley, along with batteries nad perhaps other storage, as it pursues a mid-century goal of net-zero carbon. Combined with potentially 740 miles of new transmission lines looping around eastern Colorado, this investment in new generation could hit $9 billion to $10 billion. Xcel will likely get its final green light from state regulators in the next month, maybe two.
This has repercussions beyond Xcel Energy, which sells more than half the electricity in Colorado. It also delivers wholesale sales to some municipalities and cooperatives, including Holy Cross Energy, Yampa Valley Electric, and Grand Valley Power.
Is this money well spent? If you’re a climate hawk, as I am, convinced we must dramatically reduce our emissions of greenhouse gases, this represents a giant step forward. We must immediately reduce emissions from electrical generation and also displace fossil fuels in transportation and buildings.
True, China’s emissions keep growing. But Colorado can lead the United States by example, and the United States can lead the world.
Some people, even champions of this transition, disagree with the precise pathway. For example, if demand were shaved through energy efficiency and other programs, will less investment in new generating resources be needed, says Western Resource Advocates, an environmental group.
From Colorado eastern plains, already dotted with wind turbines, come other complaints about cluttered skylines. This is not universal. Other plainsmen (and women) welcome the property taxes local governments will realize and the lease payments to land owners.
Nuclear power represents another question. Colorado’s lone experiment with nuclear power, at the St. Vrain plant near Greeley, went seriously awry. But now come efforts with presumably smaller and hence lower-risk modular reactors, such as are being planned in Idaho and also Wyoming. Cost, more than safety, is the fulcrum for the debate. Nuclear has had exorbitant cost overruns. Will this new technology be better?
Comanche 3, a coal plant in Pueblo, has become the symbol for this energy transition. It was approved 18 years ago by Colorado regulators, a $1 billion investment (in today’s dollars). Utilities had been building ever-bigger coal-fired coal plants, abetted by natural gas plants to meet peak demands, for a half-century. Few were willing to give credence to the vision of renewable energy. I remember in about 2008, a geologist in Meeker who still hoped for the dream of milking hydrocarbons from the oil shale of northwestern Colorado. “We can’t run a civilization on windmills,” he fumed.
We still can’t. And as somebody pointed out to me, even wind turbines need oil and grease and so forth. But we can do far, far more than Xcel or most others thought just 18 years ago.
Cheyenne Ridge, located between Burlington and Cheyenne Wells, near the Kansas border, is one of many wind projects on Colorado’s eastern plains. Soon, new transmission will enable far more wind and solar projects. Photos/Allen Best Photo credit: Allen Best/The Mountain Town News
This has come in increments. Almost simultaneous with approval of Comanche 3 came Colorado’s first renewable energy mandate. Xcel fought it. Then it set out to comply. Costs of wind tumbled dramatically, and then so did solar. Something of the same thing is now happening with lithium-ion batteries.
It’s not yet possible on a large scale to affordably eliminate all emissions. But also note this. In 2005, when Xcel began building Comanche 3, about two-thirds of its electricity came from coal plants. Within a decade, it will be close to zero. We’re moving fast, because we can and because we must.
Will there be adverse consequences beyond altered prairie vistas on the Great Plains? Quite possibly. With I-70, what once was close to a full-day journey from Grand Junction to Denver was shortened to a long morning. But the highway has made mountain valleys a little less lovely and far more noisy.
This course correction in our energy foundation may also prove to have flaws that may require further altering. And in 18 years we may look back and wonder if we should have held off just a little longer for a technological breakthrough instead of making Colorado’s eastern plains look like Paul Bunyan’s playground for Erector Set creations.
What we cannot afford is to do nothing. Given what we know today, about the cost of energy and the cost of climate change, this massive investment soon to happen looks to be the wisest path forward.
Your climate solutions journey begins now. Filled with the latest need-to-know science and fascinating insights from global leaders in climate policy, research, investment, and beyond, this video series is a brain-shift toward a brighter climate reality.
Climate Solutions 101 is the world’s first major educational effort focused solely on solutions. Rather than rehashing well-known climate challenges, Project Drawdown centers game-changing climate action based on its own rigorous scientific research and analysis. This course, presented in video units and in-depth conversations, combines Project Drawdown’s trusted resources with the expertise of several inspiring voices from around the world. Climate solutions become attainable with increased access to free, science-based educational resources, elevated public discourse, and tangible examples of real-world action. Continue your climate solutions journey, today.
Over the last year and a half, I’ve dissected every remark I could find in the press from Senator Joe Manchin on climate change. With the fate of our planet hanging in the balance, his every utterance was of global significance. But his statements have been like a weather vane, blowing in every direction. It’s now clear that Mr. Manchin has wasted what little time this Congress had left to make real progress on the climate crisis.
Since early 2021, congressional Democrats and President Biden have worked relentlessly to negotiate a climate policy package. When Build Back Better passed the House last fall, it included $555 billion in clean energy and climate investments. After four decades of gridlock in Congress, the Democrats were poised to finally pass a major climate bill, with agreement from 49 senators. But yesterday, one man torched the deal, and with it the climate: Mr. Manchin.
By stringing his colleagues along, Mr. Manchin didn’t just waste legislators’ time. He also delayed crucial regulations that would cut carbon pollution. Wary of upsetting the delicate negotiations, the Biden administration has held back on using the full force of its executive authority on climate over the past 18 months, likely in hopes of securing legislation first.
The stakes of delay could not be higher. Last summer, while the climate negotiations dragged on, record-breaking heat waves killed hundreds of Americans. Hurricanes, wildfires and floods pummeled the country from coast to coast. Over the last 10 years, the largest climate and weather disasters have cost Americans more than a trillion dollars — far more than the Democrats had hoped to spend to stop the climate crisis. With each year we delay, the climate impacts keep growing. We do not have another month, let alone another year or decade, to wait for Mr. Manchin to negotiate in good faith.
The climate investments in the bill ranged from incentives for clean power like wind and solar, to support for electric vehicles. They were essential to meeting President Biden’s goal of cutting carbon pollution in half from its 2005 levels by 2030 — the United States’ contribution to limiting global warming to 1.5 degrees Celsius. Congress’s failure to act means that, under the best case scenario with the policies we already have in place, we will only get 70 percent of the way there.
After months of stop-and-start discussions, with Mr. Manchin repeatedly walking away from the negotiations, Congress has largely run out of time. Democrats need to pass their reconciliation package this summer, and despite weeks of round-the-clock effort from Senator Chuck Schumer, the majority leader, and his team, Mr. Manchin has now refused to agree to vote for spending on climate. While he claimed on a West Virginia talk show on Friday that it wasn’t over, that “we’ve had good conversations, we’ve had good negotiations,” this is doublespeak; he simply doesn’t want to be held accountable for his actions. He has consistently said one thing and done another.
Mr. Manchin’s refusal to agree to climate investments will hurt the economy he claims he wants to protect. The package would have built domestic manufacturing, supporting more than 750,000 climate jobs annually. It would have also fought inflation, helping to make energy bills more affordable for everyday Americans. This is particularly ironic since Mr. Manchin said inflation was the chief reason he was uncomfortable with supporting tax incentives for clean energy right now.
Over the past year, Mr. Manchin has taken more money from the oil and gas industry than any other member of Congress — including every Republican — according to federal filings. A Times investigation found that he also personally profited from coal, making roughly $5 million between 2010 and 2020 — about three times his Senate salary. Coal has made Mr. Manchin a millionaire, even as it has poisoned the air his own constituents in West Virginia breathe.
As Upton Sinclair put it: “It is difficult to get a man to understand something, when his salary depends on his not understanding it.”
But one thing I have never understood about Mr. Manchin is how he looks his grandchildren in the eye. While he may leave his descendants plenty of money, they will also inherit a broken planet. Like other young people, Mr. Manchin’s grandchildren will grow up knowing that his legacy is climate destruction.
Click the link to read the article on the Big Pivots website (Allen Best):
Colorado’s largest electrical utility has halved its coal generation since 2005 and will achieve effectively zero by 2030. Surely this investment ranks as among the biggest, most important of the last century
A cliché seems like a terrible way to begin a story that strives for deeper analysis of this milestone in Colorado history, but I’m not clever enough to come up with my own simile or metaphor, so here goes:
Colorado’s reinvention of its energy system is like trying to rebuild an airplane in mid-air. Plans by Xcel Energy, by far the state’s largest utility, to revamp its electrical generation constitute the most compelling exhibit.
Colorado has been flying a plane using technology and infrastructure from the 1970-1990s. The rebuilding has been underway for awhile now, particularly since 2016, after prices of wind, in particular, had plummeted, and utilities satisfied themselves that they could integrate renewables without endangering reliability.
Now comes the giant stride. This coupled with new transmission could yield investment of up to $10 billion.
I’d suggest that Colorado has had few singular rivals in the last 100 years in terms of investment in public and quasi-public infrastructure. The splurge of roadbuilding unleashed by the National Interstate and Defense Highways Act of 1956 certainly surpasses this. I’d single out the Colorado-Big Thompson water diversion project of the ‘40s and ‘50s. Arguably construction of DIA, too. Buy me a beer, and we can chew through this at length.
But by whatever yardstick you choose, this is – and you knew I had to say this – a Big Pivot. This represents Colorado’s most muscular turn yet from centralized power generation from fossil fuel sources to more dispersed renewables.
Click the image to go to Xcel’s project page and the interactive map.
The landscape of eastern Colorado can be expected to look substantially different by the end of 2025. The plans — approved conceptually in a series of meetings during recent weeks by the Colorado Public Utilities Commission —will yield thousands and thousands of new wind turbines during the next few years scattered across eastern Colorado, likely massive amounts of solar, and game-changing amounts of storage. I can’t cite precise numbers, because they are yet to be worked out.
More clear is the transmission needed for this farm-to-market delivery of renewable energy: up to 650 miles of high-strung wires looping around eastern Colorado in a project called Power Pathway. Also possible is a 90-mile extension from a substation north of Lamar to the Springfield area.
Driving this hurried, gold rush-type of development in Colorado’s wind-rich regions is the state’s determination to dramatically reduce carbon dioxide emissions from electrical generation during this decade. It aims to do this even as it displaces use of fossil fuels in transportation and for space and water heating in buildings.
A hard deadline is imposed by the expiration of federal tax credits for wind and solar at the end of 2025.
An Xcel representative, Amanda King, had testified to the importance of completing the first two Power Pathway transmission segments sooner rather than later. The PUC commissioners cited that testimony in their June 2 decision approving the transmission lines:
“The company asserts that by having these segments in-service by the end of 2025, wind and solar developers will be able to interconnect resources prior to the expiration of the production tax credit and step-down of the investment tax credit, which would represent cost savings of approximately $300 million per (gigawatt) of interconnected wind capacity and $100 million per (gigawatt) of interconnected solar capacity, in net present value, to customers,” the decision said.
“It’s a pretty amazing amount of infrastructure that needs to go into the ground in a really short time,” says one individual, a stakeholder in the PUC process, speaking on condition of confidentiality.
Because of that exigency, a written decision is likely in July, no later than August. Appeals by Xcel or other stakeholders could delay the actual green light, but not for long.
For some, this represents a triumph of arguments going back almost two decades.
“It helps unleash the innovation we need to build the 21st century electrical system,” said Leslie Glustrom, who wears various hats but was speaking as a representative of the Colorado Renewable Energy Society the day I talked with her.
She uses the metaphor of inheritance vs. income. In this case, fossil fuels are the inheritance. In the future we must live off the income of renewables.
“If you were lucky enough to have a big inheritance you could buy three houses and five condos,” she said. Living off income poses a major challenge, she says, especially if you haven’t acquired the skills you need.
“We can do it,” she adds, “especially if we are better at matching our demands to the times when we have an abundance of wind and solar.”
Risk is inherent in this process of transition. But risk cuts both ways, as pointed out by Gwen Farnsworth, senior policy advisor for Western Resource Advocates. The PUC deliberations are focused on how to evaluate those risks of relying upon fossil fuel generation in terms of system reliability and climate change. The commission, she says, is “pushing Xcel so that its future resources are cleaner, more flexible and more reliable.”
With this triumph also comes anxiety. The three commissioners used the word “uncertainty” maybe a dozen times when they deliberated during a long afternoon on June 10.
Eric Blank. Photo via Big Pivots
“We are making decisions about billions of dollars of investments under conditions that may have unprecedented uncertainty,” said Eric Blank, the chair, while mentioning climate change, inflationary pressures, rising labor costs, and supply chain disruptions.
Renewables won’t be the steal they were in 2018. Demand has grown. This is the gold rush. California alone wants to add 8,000 megawatts of renewable generation.
Closely related is the growing concern about “resource adequacy” mentioned by Commissioner Megan Gilman and also Commissioner John Gavan. Can Xcel keep the air conditioners on during a really, really hot day—or, as in February 2021, on a very cold day?
After, I talked with Jeffrey Ackermann, the chair of the PUC for four years prior to Blank, to get his big-picture assessment of what this represents.
“I think everyone – regulators and utilities, but stakeholders, too – are eager to move forward while also realizing that you can’t get it mostly right. It has to be 100% right.”
Ackermann was referring to the greater complexity of the electrical grid being assembled with its more diverse resources and greater interplay between utilities and consumers. The stakes have also elevated.
Jeffrey Ackermann. Photo via Big Pivots
Overlay that onto the burgeoning Western markets that are still taking shape, which provokes new questions about resource adequacy and reserve margins. What if the interconnected utilities from Montana to New Mexico get struck by a heat wave at the same time?
In the PUC handling of this complex case, Ackermann commends his successor, Blank.
“I like how this chairman has sequenced the conversation,” he said. “It affirms the complexity of this and also the uncertainty. At the same time it doesn’t shy away from realizing that some tough decisions need to be made now if you want to achieve 2030 goals and beyond. It’s a tough balance.”
Ron Lehr, who chaired the PUC beginning in 1983, concedes the complexity, acknowledges the uncertainty – although pointing out that in 1983, interest rates stood at 18%. (I can confirm; I was suffocating that year, paying 21% interest on my loan for a purchase of a trailer in Granby).
Colorado’s planning process, says Lehr, deserves credit. For outsiders, it’s maddeningly complex and anything but transparent. Even those deeply engaged in the process sometimes get frustrated with the filing system at the PUC. Joe “Schmo,” public citizen? Fuggedaboutit.
Despite these shortcomings, Lehr argues the process itself has been very effective and has improved over time. It creates a forum for diverse voices to exchange ideas.
That process yields some crackpot ideas, he said, “but you weed through them. Then you can diversify your thinking and create a lower-risk template that can attract investment from the private sector.”
Colorado’s process, he added, has drawn national attention for yielding lots of bids for electrical generation — and lower prices.
“The more inclusive and integrated our planning and the more far-sighted the planning, the better we can handle the uncertainty,” he told me.
The story about moving on from coal is the easy story here, but Lehr thinks a side story – about the impacts of Winter Storm Uri on natural gas prices in Colorado — will move the needle past natural gas, too.
“Gas is a bankrupt long-term strategy. You don’t have it when you need it.”
Back to the metaphor of rebuilding the airplane in mid-flight. It was given to me by Mike Kruger, the chief executive of the Colorado Solar and Storage Association, and in a far more colorful way than I’ve articulated here.
We wouldn’t be remodeling this plane in flight if it wasn’t necessary, he says. Yes, uncertainties exist, and likely new uncertainties will become apparent. But the status quo of centralized fossil fuel generation isn’t working.
“We have to try something.”
Despite its cumbersome aspect, he believes Colorado’s legal structure and the stakeholders – Xcel but also the business, consumer, environmental, government, and other groups – have enough flexibility to respond rapidly if necessary.
“If in two and a half years we find we missed the mark on something, I would be surprised if the industry and the environmental and labor groups and Xcel would not be able to figure how to correct it quickly.”
Segments of wind turbine towers at the former Vestas (now CS Wind) factory in Pueblo with the smokestacks of Comanche Generating Station in the background, unit 3 on the left. Photo/Allen Best
That brings up Colorado’s newest coal plant, not quite a dozen years old, and also its largest, at 750 megawatts: Comanche 3.
(Some refuse to call it by that name in the belief that it besmirches tribal people. I couldn’t help note that almost invariably in the PUC discussions it was referred to as unit 3 or Pueblo unit 3.” Maybe Leslie Glustrom’s rants on this are being heard).
When the plant was formally approved in 2005, Colorado’s first major wind farm, Colorado Green, located near Lamar, had just begun producing electricity. It was the future, not coal, but most utilities had not yet gotten that memo. Tri-State was about to start spending $100 million on a humongous coal plant downstream along the Arkansas River in Kansas—a decision from which it has not fully recovered. And, of course, Comanche 3 cost upwards of $1 billion in today’s dollars. Xcel still had humongous debt, a central issue in how soon it is retired.
Coal’s rapid fall from favor and competitiveness is told in these numbers. The fuel produced 66% of Xcel’s electricity for Colorado retail and wholesale customers in 2005. Last year It had fallen by more than half, to 32%. It should be close to zero by 2030. (Xcel may still buy some power from the market that will come from coal plants).
As Noah Long of the Natural Resources Defense Council pointed out in a May 25 posting, this electric resource plan being approved could put Xcel on track to achieve approximately 90% carbon emissions’ reductions as compared to 2005 when Comanche closes, no later than New Year’s Eve of 2030.
Actually, the plant will likely close before then, perhaps long before.
Operations of Comanche will be determined, in part, by a new filter, the social cost of carbon, as specified by new Colorado laws in the last several years.
Another element of the plan being approved by the PUC will create a performance-incentive mechanism (PIM, in the acronym-heavy soup of PUC discussions) to give Xcel financial incentives to steer the plant with decarbonization goals in mind.
The PUC commissioners are going beyond the settlement agreement submitted to them in May by Xcel and the various stakeholder groups. At the suggestion of Blank, the commissioners plan to adopt an additional review governing operations and management that is to be tripped if another major investment is needed to continue operations of the plant.
At issue is how much money will be poured into propping up what one person close to these proceedings described as a “dog.” The analogy is to a car. At what point do you just walk away from it?
“Five years down the road we may have another turbine-bearing outage, and it just isn’t worth it,” said Commissioner Gavan, alluding to the cause of the most recent outage that has had “Pueblo unit 3” off-line for most of 2022 (it’s back in operation now). It was also off-line for most of 2020.
It seemingly has been cursed with problems since it began operations in the summer of 2010. The latest evidence was the deaths of two men in a slide of coal outside the plant on June 5. Their bodies were found under about 60 feet of coal.
A sharper definition of the closing should come into view during a “Just Transition” proceeding that begins in 2024. That proceeding will consider another round of new generation, presumably renewables, likely with a preference for those that can be added to property tax rolls in Pueblo County, to compensate for the loss of property tax there as the coal plants get retired.
The Pawnee Power Plant near Brush is to be converted to natural gas, but with retirement of some components of the coal-burning operation. Photo/Allen Best
In all this, the PUC has much balancing to do. Xcel is ultimately responsible for reliability of electricity, the PUC in protecting the interests of ratepayers. At least in theory – and I believe in practice – both have an interest in reducing greenhouse gas emissions, while Xcel has the additional motivation of delivering profits to investors.
This gets into a complex area of cost-recovery. As Glustrom points out, “these are not insignificant numbers.” The Colorado Renewable Energy Society documented undepreciated assets of the Hayden coal units of somewhere around $70 million, the Pawnee plant at Brush of $170 million, Comanche 3 even more.
Glustrom has long argued that state regulators allow Xcel and its investors unreasonably large returns on their investments. The authorized rate of return is 9.3%. If the utility’s decisions are risk free, then the return on equity should be below 5%, she says. Most everybody else is inclined to be more generous to Xcel than Glustrom.
What almost certainly will come into play is a concept called securitization. It’s fundamentally a way for an investor-owned utility to shuffle its debt into lower-interest long-term bonds. This will be part of the process going forward and, once again, could alter the retirement date of Comanche 3.
This area of cost recovery, almost certainly will be controversial – and might trigger an appeal by Xcel.
Three of the many additional elements of this deserve mention.
Pre-construction development
One is the idea advanced by Blank to give Xcel some leeway to begin planning and incurring expenses for gas-fired generation, but also wind, solar, and storage – with the expectation that the company will be able to recoup costs short of actual commissioning construction of the assets. It’s called “pre-construction development assets.”
This provision reflects the concern about the uncertainties and fluidities that Blank talked about in the June 10 meeting. This gives the company some rope to move forward but only so far.
Yampa River. Photo credit: Yampa River Integrated Water Management Plan website
Status of water
Another new element never seen before in Colorado – and perhaps no other state, either – is a provision that Xcel must report the status of its water rights associated with its retiring coal plants. Think particularly of Hayden, although Xcel has an interest in the coal plants at Craig, too. And then there is Comanche 3.
At first glance, this seems like a strange requirement. After all, Colorado state government already has a Division of Water Resources. Why does the PUC need to poke its nose into water?
That was essentially Xcel’s argument. The PUC commissioners, though, hesitated not at all in embracing this requirement
The idea had been advanced by Western Resource Advocates. WRA’s Ellen Howard Kutzer explains the expansive view here: Water is an essential component of the coal-fired steam plants built by the monopoly to create a public good, the production of electricity. As the coal plants go, the PUC should have some purview over the disposition of those assets. And Xcel has the staff that can provide the essential information in a way that is understandable to PUC staff.
True, the state water agency gets the same information. But the water world gets weirdly wonky at times. So, Xcel’s water staff can translate it for non-water-wonks. It won’t be a major imposition.
Five coal-burning units at Craig and Hayden now require water, but by 2030 those uses of Yampa River water will crease. Future uses remain unclear. 2020 photo/Allen Best
But why does this information matter?
Xcel likely has not decided, and certainly has not disclosed, what it will do at Hayden. It has talked about molten salt but has not dismissed the possibility for green hydrogen or other technologies that may – or may not – be ready for prime time. They can involve water.
The way Western Resource Advocates sees the water, it should be considered as part of the just transition process for Yampa Valley communities. The water that is kept there will most benefit the local communities.
The fear here is of water export, particularly to the Front Range. I dove deeply into this in late 2019 and early 2020 on behalf of Aspen Journalism. Geography matters entirely here. Exporting the water would require pumping it over two mountain ranges. That’s a big lift. That said, money has surfaced recently to reanimate the even bigger stretch of exporting water from Flaming Gorge Reservoir to the Front Range, so who knows.
Just how much water is involved in water for the coal plants? I forget the precise volumes, but they are not as much as you might think, but neither were they insignificant. Importantly, they have relatively high seniority.
WRA’s position, Howard Kutzer said, is that it’s not right to leave the utility to do with the water entirely what it pleases.
“They used these public resources to create a public good, so ultimately — not now, but in the future — the PUC should be able to say whether transferring those water rights is in the public interest.”
Level playing field for storage
Finally, the PUC affirmed their support for the treatment of storage proposed by Colorado Solar and Storage.
“Storage will be a critical path to getting the grid of the future that we want,” said Gilman at the June 10 meeting of the commissioners in endorsing the recommendation of the trade group.
The critical issues here are of the value assigned to storage and the role of private operators in providing that storage as opposed to company-owned storage. The limitations of storage are well known. Lithium-ion batteries currently can store reserves for about four hours. Because of that, Xcel Energy wanted to assign a lower value, but others wanted a higher value. This outcome favors higher value and hence greater incentive for private developers to propose projects.
Fred and Kay Lynn Hefley arranged to have a wind turbine erected on their farm near Walsh, in southeastern Colorado, to record the wind speeds and durations. 2021 photo/Allen Best
Other elements of this plan being approved could deserve mention. An entire story could be written through the lens of Pueblo County (and maybe I will—later).
Or through the lens of Akron, or Cope or Walsh, places on the eastern plains near which these new transmission lines will be draped, along with wind turbines. I hear diverse voices. Some resent the coming wind turbines, an intrusion into rural life to benefit city residents. Others – more commonly those who will directly benefit from lease payments – welcome the development of wind and solar resources.
This won’t solve all the problems of eastern Colorado, where mechanization has left farmers arguably more prosperous but it’s the main street of towns ever more anemic. Many, like Yuma County, had larger populations 100 years ago than they do today. Several times in recent years, I’ve had young people from eastern Colorado say to me, “I just wish Kit Carson had two or three restaurants,” or “It would be nice if Lamar was just a bit bigger.”
This won’t make that happen, but it will at least slow some of the erosion.
What’s next in this transition? So many things are up in the air. Rules are being drawn up governing the minimized use of natural gas in buildings (and boy, is that stuff tedious).
Then there will be the question of demand-side management and energy efficiency. Xcel is expected to submit its plans for that and for beneficial electrification of buildings on July 1. Expect a lot of push and pull here, as there has been over Comanche 3. The environmental community believes Xcel has vastly under-estimated what it can do in terms of reducing demand and shaping demand to better correspond with this vast fleet of renewables soon to take shape on Colorado’s High Plains.
There’s good cause for high-five’s, but there will be little time to dawdle.
Northern Colorado on July 9, 2021, sunset with Longs Peak in the background. Photo credit: Allen Best/Big Pivots
Click the link to read the article on the Big Pivots website (Allen Best):
This late-June coolish spell in Colorado is unusual. The trend is toward hot and hotter. Denver in June matched a record set just a few years ago for the earliest time to hit 100 degrees. Grand Junction last year set an all-time record of 107.
What if the heat rises to 116 degrees, such as baked Portland a year ago? Could Xcel Energy deliver the electricity needed to chill the air?
It can in 2022, the company says, but it has less confidence for 2023 and 2024 after it shuts down a coal plant. Xcel frets about disruption to supply chains necessary to add renewable generation.
Tri-State Generation and Transmission, Colorado’s second-largest electrical supplier, also foresees supply-chain issues as it replaces coal-fired generation with renewables. It has extended the deadline for bids from developers of wind, solar, and storage projects by more than two months, to Sept. 16.
Colorado has hit a bump in its energy transition. The climate sends ever-louder signals that we must quit polluting the atmosphere with greenhouse gases. After a sluggish response, Colorado has been hurrying to pivot. Now, inflation and other problems threaten to gum up the switch.
The glitch is significant enough that Eric Blank, the Colorado Public Utilities Commission chair, asked Xcel representatives at a June 17 meeting whether it might be wise to keep Comanche I, the aging coal plant in Pueblo, operating beyond its scheduled retirement at the end of 2022.
“It kills me to even ask this question,” said Blank, a former developer of wind and solar energy projects.
In northwestern New Mexico, the aging San Juan Generating Station has been allowed to puff several months past its planned retirement because of problems in getting a new solar farm on line. Even so, the utility predicts rolling blackouts, as has happened in other states.
No blackouts have been predicted in Colorado. Xcel has a healthy reserve margin of 18%.
But even if Xcel wanted to keep Comanche 1 operating beyond 2022, it lacks the permits to do so, company representatives told PUC commissioners at a June 17 meeting devoted to “resource adequacy.”
In addition to the supply chain disruptions, Xcel failed to adequately foresee demand growth. Residential demand was expected to decline as people returned to offices after the covid shutdown. They have, but less than expected. Too, demand from Xcel’s wholesale customers – it provides power for Holy Cross Energy but also some other utilities – has grown more than projected.
“We can’t go into the summer of 2023 with less than 10% reserve margins,” said Blank. “We just can’t.”
Old technology, though, isn’t always a sure-fire answer. Coal plants routinely must shut down for maintenance. Then there are the fiascos. Problems have repeatedly idled Comanche 3, the state’s youngest and largest coal plant, during its 12 years. Cabin Creek, Xcel’s trusty pumped-storage hydro project at Georgetown, has also been down.
The electrical grid now being assembled will be more diverse, dispersed, and flexible. Many homes will have storage, the batteries of electric vehicles will be integrated into the grid, and demand will be shaved and then shaped to better correspond with supplies. Megan Gilman, a PUC commissioner from Edwards, pointed out that this strategy could be a key response to tightening margins between supplies and demands. Xcel has had a small-scale peak-shaving program but will soon submit plans for expanded demand management.
Meanwhile, it gets hotter and hotter. Russ Schumacher, the state climatologist, says Colorado’s seven of the nine warmest years on record have occurred since 2012. We haven’t had a year cooler than the 20th century average since 1992. Air conditioning has become the new normal for high-end real estate offerings even in Winter Park, elevation 9,000 feet. It’s not just the heat. There’s also the matter of smoke, as more intense wildfires grow larger and expand across the calendar, too. For weeks, sometimes months on end, opening the windows is no option.
Colorado’s record temperature of 115 degrees was set in 2019 near Lamar, in southeastern Colorado. Nobody yet has made public modeling of the potential for that kind of heat in Front Range cities, where 90% of Coloradans live. Last year the deaths of 339 people were attributed to heat in the Phoenix area, where nighttime temperatures sometimes stay above 90.
Power outages in Texas during February 2021 were blamed — mostly without merit — on wind farms. Nobody in Colorado wants to see any plausible excuse to blame renewables. The best way to avoid that is to keep the air conditioners running.