“Virtually all levels in south-central #Kansas wells were up, along with a good portion of those in northwest Kansas” — Brownie Wilson ((Kansas Geological Survey)

Dragon Line irrigation system. Photo credit: AgriExpo.com.

Here’s the release from the University of Kansas:

Groundwater levels during 2018, on average, rose slightly or remained about even throughout most of western and central Kansas, according to preliminary data compiled by the Kansas Geological Survey.

“By and large, 2018 was a good year for groundwater levels,” said Brownie Wilson, KGS water-data manager. “Virtually all levels in south-central Kansas wells were up along with a good portion of those in northwest Kansas, and although southwest Kansas saw a few decline areas in the usual spots, they were not as great as in years past.”

The KGS, based at the University of Kansas, and the Kansas Department of Agriculture’s Division of Water Resources (DWR) measure more than 1,400 water wells in Kansas annually. Most of the wells are drilled into the High Plains aquifer, a network of water-bearing rocks underlying parts of eight states and the state’s most valuable groundwater resource.

Ninety percent of the collected data comes from wells tapping the aquifer. The other wells are drilled into other aquifers underlying the High Plains aquifer and shallow aquifers adjacent to surface-water sources, such as the Arkansas River. Most of the 1,400 wells have been measured for decades.

In Kansas, the High Plains aquifer comprises three individual aquifers—the widespread Ogallala aquifer that underlies most of the western third of Kansas, the Equus Beds around Wichita and Hutchinson, and the Great Bend Prairie aquifer around Pratt and Great Bend.

Water levels in the Ogallala aquifer are influenced mainly by the amount of water withdrawn each year, which in turn is affected by the rate and timing of precipitation. Recharge, or water seeping down from the surface, adds little groundwater to the Ogallala. In central Kansas, however, recharge has more of an impact because the Equus Beds and Great Bend Prairie aquifer are shallower and average precipitation in that part of the state is higher.

Most of the wells in the network monitored by the KGS and DWR are within the boundaries of the state’s five Groundwater Management Districts (GMDs), which are organized and governed by area landowners and local water users to address water-resource issues.

In Southwest Kansas GMD 3, average levels dropped .39 feet. Although down, the change was less than in 17 of the last 20 years when levels fell between .5 and 3.5 feet annually. A rise of .05 feet in 2017 was the only positive movement during that time.

For the second summer in a row, water flowed for a time from the Colorado state line to Garden City. The river, which interacts with its adjacent shallow alluvial aquifer, has been mainly dry in western Kansas for decades.

Wells monitored in GMD 3 are drilled into the Ogallala aquifer except in a few areas where they draw from the deeper Dakota aquifer. The district includes all or part of Grant, Haskell, Gray, Finney, Stanton, Ford, Morton, Stevens, Seward, Hamilton, Kearny and Meade counties.

Western Kansas GMD 1 experienced a slight drop of .18 feet following a slight gain of .07 feet in 2017. The GMD includes portions of Wallace, Greeley, Wichita, Scott, and Lane counties, where the majority of wells are drilled into the Ogallala aquifer.

“West central was basically unchanged as a whole but the average is bookended by declines in Wallace County and rises in Scott County,” Wilson said.

Northwest Kansas GMD 4 had an average increase in water levels of .26 feet following a rise of .38 feet in 2017. GMD 4 covers Sherman, Thomas, Sheridan and parts of Cheyenne, Rawlins, Decatur, Graham, Wallace, Logan and Gove counties. Groundwater there is pumped almost exclusively from the Ogallala aquifer and shallow alluvial sources associated with streams. Besides being influenced by precipitation, water-level results in part of GMD 4 were tied to crop loss.

“Some producers south of the Goodland to Colby area got hailed out early in the 2018 growing season,” Wilson said. “With hail damaged crops and higher precipitation rates in the eastern portion of GMD 4, wells there had less declines or even slight recoveries.”

Big Bend GMD 5 had an average increase of 1.21 feet following an increase of .30 feet in 2017. The GMD is centered on the Great Bend Prairie aquifer underlying Stafford and Pratt counties and parts of Barton, Pawnee, Edwards, Kiowa, Reno and Rice counties.

Equus Beds GMD 2, a major source of water for Wichita, Hutchinson and surrounding towns, experienced a gain of 1.35 following a 1.93-foot decline in 2017. The GMD covers portions of Reno, Sedgwick, Harvey and McPherson counties.

The KGS measured 581 wells in western Kansas and DWR staff from field offices in Stockton, Garden City and Stafford measured 223, 260 and 357 wells in western and central Kansas, respectively. Measurements are taken annually, primarily in January when water levels are least likely to fluctuate due to irrigation.

The results are provisional and subject to revision based on additional analysis. Data by well is available at http://www.kgs.ku.edu/Magellan/WaterLevels/index.html.

The Ogallala Water Coordinated Agriculture Project update

From The North Platte Telegraph (George Haws):

The Ogallala Water Coordinated Agriculture Project brings together 70 researchers, along with specialists and students based at seven universities and two USDA research locations…

OWCAP involves research, demonstration and education. The University of Nebraska-Lincoln’s Water Resources Field Laboratory near Brule is one of the research sites.

The TAPS competition at North Platte is also part of OWCAP. TAPS stands for Testing Ag Performance Solutions. A highly respected and innovative program, TAPS is made up of miniature corn and grain sorghum “farms,” where individuals and teams make decisions such as when and how much to irrigate, and how much nitrogen fertilizer to use. Participants earn awards for efficiency and profitability.

UNL water management specialist Daran Rudnick is an active member of the OWCAP research team. He worked with other educators at the West Central Research and Extension Center at North Platte to implement TAPS three years ago.

OWCAP is about identifying and promoting practices that conserve water and prevent water pollution, said OWCAP Manager Amy Kremen, who is also a water expert at Colorado State University.

Sharing ideas is an important part of OWCAP. For example, TAPS is now expanding in coordination with Oklahoma State University to offer a sprinkler-irrigated corn competition at Guymon, Oklahoma, this year.

OWCAP participants in Texas have something to share, too. The Natural Resources Conservation Service and North Plains Groundwater Conservation District there have implemented a master irrigator program that involves intensive training and certification. Now other states are considering implementing similar programs, Paulman said. Programs like that help increase adoption of water conserving practices, he said.

OWCAP has also resulted in research projects that each span three or more states, Kremen said. That “helps us to draw broader conclusions” about the potential of water conservation practices.

Those practices include making effective use of soil moisture sensors and aerial photography to inform irrigation and fertilizer decisions, carefully timing irrigation based on crop growth stages, using university-supported irrigation scheduling tools, and transitioning successfully to dryland…

OWCAP has also resulted in publication of over 50 peer-reviewed journal articles and other reports, which are available at ogallalawater.org.

Kremen said the OWCAP team is on track to complete its USDA-NIFA funded work within the next two years. Team members are the lead organizers for a summit to take place in early 2020 in Amarillo, Texas. There, water management leaders from throughout the region will share their experiences and findings in hopes of benefiting agricultural producers and communities throughout the region.

Scottsbluff, #NE: Becky McMillen’s “Rising Water” to screen on March 2, 2019

Nebraska Rivers Shown on the Map: Beaver Creek, Big Blue River, Calamus River, Dismal River, Elkhorn River, Frenchman Creek, Little Blue River, Lodgepole Creek, Logan Creek, Loup River, Medicine Creek, Middle Loup River, Missouri River, Niobrara River, North Fork Big Nemaha River, North Loup River, North Platte River, Platte River, Republican River, Shell Creek, South Loup River, South Platte River, White River and Wood River. Nebraska Lakes Shown on the Map: Harlan County Lake, Hugh Butler Lake, Lake McConaughy, Lewis and Clark Lake and Merritt Reservoir. Map credit: Geology.com

From Farm & Ranch (Spike Jordan):

Water is a contradiction for Western Nebraska. It’s both seemingly abundant, yet simultaneously finite and scarce.

A new film by a local award-winning documentary filmmaker explores this contradiction and tells the story of water in the Panhandle, from the founding of the numerous irrigation and natural resources districts that line the North Platte valley, to the legal fights surrounding the regulation, distribution and control of that water.

Insight Creative Independent Productions Executive Producer and Director Becky McMillen’s “Rising Water,” was originally designed to be a web series, and viewers will get a first peek at it when the film premiers at the Legacy of the Plains Museum in Gering on Saturday, March 2, at 1 p.m. The screening of the documentary is in conjunction with The Smithsonian’s Museum on Main Street the Water/Ways” exhibit, which is open now until April 13 at Legacy.

“Everyone knows how to use YouTube, and they’ve gotten used to web series,” McMillan said. “They’re used to watching short pieces.”

In essence, each of the segments of the film is a self-contained documentary which covers a different facet of the story of our water, she said.

The hour and fifteen minute feature is the product of more than three solid years of work, with much of the footage and information gathered over a greater period of time. McMillen said that her father, Udell Hughes Sr., helped her with much of the technical research for the film. It also contains material gathered during production of McMillen’s last major project, “River of Time: Wyoming’s Evolving North Platte River,” a half-hour program which premiered on Wyoming PBS in November 2012.

“We’ve been sort of building up towards this film,” she said. “A lot of my historical research was actually done at Legacy of the Plains.”

The film contains interviews with managers of irrigation districts, farmers, UNL researchers and footage from public hearings concerning water issues.

“I knew that I needed to talk about the Ogallala Aquifer, but it took me a while to understand that issue,” McMillen said.

So she consulted UNL research hydrogeologist Jim Goeke, who is known as “Mr. Water.” Goeke researched the aquifer and arguably knows more about the water under our feet than any other human being.

McMillen said she was surprised by how candid Goeke.

“He gave me courage to address issues that probably weren’t very popular and won’t be very popular,” she said. “We have sucked so much water out of the aquifer and I’ve been watching the Pumpkin Creek battle for years, but lost track of it.”

The challenge for McMillen was to tie together the surface water and ground water portions of the story.

And it was a lawsuit over the little western Nebraska stream that became a big State Supreme Court case.

In 2009 The Spear T Ranch settled with more than a dozen upstream ranchers and farmers in a dispute between irrigators feuding over water in Pumpkin Creek.

“I was thinking about Pumpkin Creek, but I didn’t have any visuals,” she said. “I’d filmed a meeting of farmers years ago, but the camera went south on me and there was no way I could recover the footage.”

Then synchronicity struck. McMillen’s bookkeeper was from the Spear T Ranch, and the family over time had saved all of the newspaper clippings about the fight.

“That helped me tie it all together,” McMillen said. “You just have to be able to listen and when you hear something say ‘What was that?’”

And the hunger for investigative work is what fuels most of her projects.

“I have to tell myself to stop, take notes and check things out,” she said. “I hear stories all the time and I’d love to go chase them, but I have to be responsible and pay my bills.”

McMillen said a lot of the project has been self-funded because she couldn’t kick the habit once a lead seemed promising.

Newspapers also provided McMillen a window into the issues. As the “first draft of history,” clippings are featured at prominent portions of the film.

“The Star-Herald is in a lot of these stories that I brought back from the past,” she said. “There was so much information that really help me understand what was going on at the time.”

Another portion of the film is spent exploring contamination concerns, especially the 2015 fight against a Colorado company who sought permission to use an abandoned oil well in Sioux County as a wastewater disposal site. Sioux County landowners eventually won their appeal and state lawmakers reformed the process in which permits are granted.

“I documented almost everything, and there is a lot of that in there, along with newspaper clippings” she said. “The physical thing is really important, because I couldn’t have told any of this story without the work of reporters from back in the 1800s on to the present day.”

And those are the little things, McMillen said.

“I saw articles where they hung effigies of law makers because they were going to shut the water off,” she said. “There’s always a fight about water. One guy will say ‘I was here first,’ and another guy will say, ‘hey I need that.’ And just because you were here first doesn’t mean you get to have all of it.”

And over the course of making the film McMillen said that she’s learned that there needs to be change to protect and preserve not only the Valley’s greatest gift, but the way of life for Farmers and Ranchers who live here.

“We’re going to have to look beyond what we’re calling ‘traditional practices,’” she said. “We can continue on the same track that we have been. We can’t keep expanding and still be able to sustain that.”

It was her discussions with farmers that drove home the point for her.

“I think we need to look at it as growing food,” she said. “I would like us to grow more food that doesn’t have to be shipped, because we’re going to have to address climate change and reverse it.”

And at the same time, caution needs to be exercised when employing solutions, she said.

“What we think are the solutions are not always the best way of doing things,” she said. “We can’t just blindly forge ahead just because we think it’s a good idea. At the time we’re looking at sustainable energy, we’re also wanting to put it in places that will never be the same.

“We need to work within the infrastructure we already have and not go to condemning land so that we can use it for transmission lines or wind farms. There is plenty of space for that without tearing up areas that can’t be returned to their natural state.”

National Climate Assessment: Great Plains’ Ogallala Aquifer drying out — @NOAA

Ogallala Aquifer. This map shows changes in Ogallala water levels from the period before the aquifer was tapped to 2015. Declining levels appear in red and orange, and rising levels appear in shades of blue. The darker the color, the greater the change. Gray indicates no significant change. Although water levels have actually risen in some areas, especially Nebraska, water levels are mostly in decline, namely from Kansas southward. Image credit: Nation Climate Assessment 2018

From NOAA (Michon Scott):

The Ogallala Aquifer underlies parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. From wheat and cows to corn and cotton, the regional economy depends almost exclusively on agriculture irrigated by Ogallala groundwater. But according to the Fourth National Climate Assessment (NCA4), producers are extracting water faster than it is being replenished, which means that parts of the Ogallala Aquifer should be considered a nonrenewable resource.

This map shows changes in Ogallala water levels from the period before the aquifer was tapped to 2015. Declining levels appear in red and orange, and rising levels appear in shades of blue. The darker the color, the greater the change. Gray indicates no significant change. Although water levels have actually risen in some areas, especially Nebraska, water levels are mostly in decline, namely from Kansas southward.

In the early twentieth century, farmers converted large stretches of the Great Plains from grassland to cropland. Drought and stress on the soils led to the 1930s Dust Bowl. Better soil conservation and irrigation techniques tamed the dust and boosted the regional economy. In 2007, the market value from the Ogallala region’s agricultural products totaled roughly $35 billion. However, well outputs in the central and southern parts of the aquifer are declining due to excessive pumping, and prolonged droughts have parched the area, bringing back Dust Bowl-style storms, according to the NCA4. Global warming is likely to make droughts across the Ogallala region longer lasting and more intense over the next 50 years.

The Agriculture chapter of NCA4 describes the risks and opportunities for resilience across the Ogallala region:

“Recent advances in precision irrigation technologies, improved understanding of the impacts of different dryland and irrigation management strategies on crop productivity, and the adoption of weather-based irrigation scheduling tools as well as drought-tolerant crop varieties have increased the ability to cope with projected heat stress and drought conditions under climate change. However, current extraction for irrigation far exceeds recharge in this aquifer, and climate change places additional pressure on this critical water resource.”

The RRWCD continues its partnership with Colorado NRCS in their continuous investment in water conservation, public meeting January 10, 2018

From the Republican River Water Conservation District (Tim Davis) via The Julesberg Advocate:

The Republican River Water Conservation District (RRWCD) acting through its Water Activity Enterprise (RRWCD-WAE) will again partner with NRCS to encourage water conservation and provide incentives to producers that voluntarily implement water conservation measures.

Since the Ogallaa Aquifer Initiative (OAI) sunset with the end of the 2014 Farm Bill, the RRWCD will partner with NRCS through the Environmental Quality Incentives Program (EQIP) to help producers transition from irrigated to drylands agriculture or grassland. The RRWCD founding will augment NRCS funding to producers that voluntarily agree to permanently retire irrigation wells and convert the irrigated cropland to drylands farming or grazing land.

NRCS will provide approximately two hundred fifty dollars ($250.00) per acre to producers that enroll in the permanent water retirement program. The RRWCD will provide additional incentives of between six hundred ($600.00) and one thousand five hundred dollars ($1,500) per acre depending on the location of the well within the District boundary.

Additional conservation practices may be appropriate on the converted acts. These practices will provide substantial water conservation and will help sustain the life of the aquifer. Recent research has suggested that in some cases higher capacity wells can reduce water consumption by as as much as twenty percent (20%) with little or no effect on the overall profitability…

Water conservation measures such as weather stations, soil moisture monitoring and conversion from sprinkler irrigation to a more efficient irrigation system can contribute substantially to prolonging the life of the quiver, while maintaining a strong irrigated agricultural economy. The EQIP program also provides these additional voluntary incentive based tools that all producers can use to prolong the life of this aquifer.

The RRWCD has consulted with groundwater management districts, the Water Preservation Partnership, and others to develop strategies to assist producers through financial incentives to voluntarily reduce water consumption. Several surveys distributed throughout the District to producers have indicated that voluntary, incentive based programs were preferred over regulatory water restrictions. It is important that each and every irrigated agriculture producer evaluate their individual irrigation practices to determine if they can help reduce the impact on the aquifer by implementing one or more of these conservations practices.

The deadline for application for EQIP is January 18, 2019 so please contact your local NRCS office at https://www.nrcs.usda.gov/wps/portal/nrcs/site/co/home/ or the RRWCD office in Wray, Colorado, at 970-332-3552 as soon as possible if you wish to apply for conservation funding through this program.

South Fork of the Republican River

From The Yuma Pioneer:

The Republican River Water Conservation District Board of Directors will have a public hearing on the proposed new water use fee policy during its regular quarterly meeting, Thursday, January 10, in Burlington.

The meeting will be held at the Burlington Community and Educational Center, 340 S. 14th St., beginning at 10 a.m.

The public hearing on the proposed new water use fee policy will be at 1 p.m.

RRWCD General Manager Deb Daniel said the proposed policy would not change the fee for irrigation, while municipal and commercial wells would have a minimal reduction in the fee per acre feet pumped.

Junior surface water right fees would be based on comparing the impact on compact compliance of diversions of surface water for irrigation as compared to the impact of groundwater withdrawals.

Daniel said the proposed policy addresses the fees charged by the RRWCD for compact compliance, based on the impact each type of use and consumption has on the determination of Colorado’s compliance with the Republican River Compact as determined by the RRCA Accounting Procedures.

Public comment will be heard immediately following the water use fee public hearing.

Besides the regular reports, the board will hear a presentation from Mark Lengel about concerns on the South Fork. The board also will discuss South Fork Water Rights.

For more information, please contact Daniel at 332-3552 or email her at deb.daniel@rrwcd.com.

@NASA: Scarcity Of Water Will Be The Environmental Challenge Of The Century

Groundwater storage trends for Earth’s 37 largest aquifers from UCI-led study using NASA GRACE data (2003 – 2013). Of these, 21 have exceeded sustainability tipping points and are being depleted, with 13 considered significantly distressed, threatening regional water security and resilience.
Credits: UC Irvine/NASA/JPL-Caltech

From PulseHeadlines.com (Pablo Luna):

A recent NASA study was performed to track global freshwater trends from 2002 to 2016 by collecting from the NASA Gravity Recovery and Climate Experiment. James Famiglietti, of the NASA Jet Propulsion Laboratory in California, explained, “What we are witnessing is major hydrologic change. We see for the first time a very distinctive pattern of the wetland areas of the world getting wetter, in the high latitudes and the tropics, and the dry areas in between getting drier. Within the dry areas, we see multiple hotspots resulting from groundwater depletion.” One of the areas that has been most affected is Antarctica, where 10% of its glaciers are in retreat.

According to those involved with the study, there is “clear human fingerprint” on the global water cycle. NASA has a first-of-its-kind satellite, showing that over 30 parts of the globe show dramatic depletion of fresh water. “This report is a warning and an insight into a future threat. We need to ensure that investment in water keeps pace with industrialisation and farming. Governments need to get to grips with this,” said Jonathan Farr, a senior policy analyst at the charity WaterAid. Farr says, “We have been solving the problem of getting access to water resources since civilisation began. We know how to do it. We just need to manage it, and that has to be done at a local level.”

Both the climate crisis and human activity are the two main factors causing water scarcity today, calling upon greater action and better water management by humans before the issue gets worse.

The Great #Kansas Aqueduct: Solution or Folly from a Bygone Era? — Water Finance & Management

Kansas Aqueduct route via Circle of Blue

From Water Finance & Management (Michael Warady):

In 1982, the Army Corps of Engineers released the Plains Ogallala Aquifer Regional Resources Study, which detailed for the first time (in any official capacity) the cost and opportunity related to the construction of a 360-mile concrete aqueduct beginning at the Missouri River in the Northeastern part of Kansas and ending in Utica – traveling nearly three-quarters of the way across the state. This aqueduct would deliver approximately 3.4 million acre-ft (AF) of water annually (1 acre-ft = 325,851 gallons) to parched farmers and communities. In turn, the canal would require 15 pumping stations in order to rise nearly 1,750 ft in altitude to reach its ultimate, Utica reservoir.

The cost? $18 billion up-front with an estimated $1 billion in annual ongoing expenses ($400 million in operational costs and $600 million in interest).
The costs are exorbitant – resulting in a $470/AF price of new water for farmers who, according to a 2013 report by the US Department of Agriculture, currently pay approximately $47/AF for off-farm purchased water. Can an agricultural industry with shrinking margins due to increased competition and international trade tariffs handle a 10x increase in water prices?

And yet, there remains something romantic about the Great Kansas Aqueduct. Arizona has its 336-mile Central Arizona Project; California has its 701-mile State Water Project; why shouldn’t Kansas have its Great Kansas Aqueduct? After all, as the Kansas Aqueduct Coalition has stated, “With sedimentation reducing water storage in the East, and the Ogallala being rapidly depleted in the West, Kansas stands to lose more than 37 percent of its water in 50 counties across the state by 2062, or an annual shortfall of 1.86 million acre-feet.”

Thirty-six years after this project was first conceived in full, though, shovels and backhoes remain in their sheds as the Ogallala aquifer drops nearly two feet per year in some counties due to groundwater over pumping. If groundwater withdrawals continue at current rates, most of southwest Kansas will exhaust its water reserves within 25 to 50 years. One tends to think that in times of yesteryear, individuals would have begun construction on this project in February of 1982, begging for forgiveness later. But the time of unbridled infrastructure construction has passed and Kansas continues to stress its water resources.

As one sits and considers the need for the Great Kansas Aqueduct, three questions come to mind: 1) does the Great Kansas Aqueduct solve a problem? Yes – it would increase water supplies for Western Kansas. 2) would it solve the problem for generations? Yes – it would likely be operational for decades. And 3) would it be cost-effective? Unfortunately, not. While the volume of water delivered to Western Kansas may increase, very few people would actually be able to afford it. In fact, the $18 billion estimated to build the Great Kansas Aqueduct does not even include the legal, economic, and ethical costs inherent to initiating eminent domain and forcibly removing people in the way of the canal off of their land.