Carbon-Reduction Plans Rely on Tech That Doesn’t Exist: Instead of scaling up #renewable energy, researchers promote unproved ideas — Scientific American #ActOnClimate

Global proposed (grey bars) vs. implemented (blue bars) annual CO2 sequestration. More than 75% of proposed gas processing projects have been implemented, with corresponding figures for other industrial projects and power plant projects being about 60% and 10%, respectively. sBy <a href="//commons.wikimedia.org/wiki/User:RCraig09" title="User:RCraig09">RCraig09</a> – <span class="int-own-work" lang="en">Own work</span>, CC BY-SA 4.0, Link

Click the link to read the article on the Scientific American website (Naomi Oreskes). Here’s an excerpt:

Stop and think about this for a moment. Science—that is to say, Euro-American science—has long been held as our model for rationality. Scientists frequently accuse those who reject their findings of being irrational. Yet depending on technologies that do not yet exist is irrational, a kind of magical thinking. That is a developmental stage kids are expected to outgrow. Imagine if I said I planned to build a home with materials that had not yet been invented or build a civilization on Mars without first figuring out how to get even one human being there. You’d likely consider me irrational, perhaps delusional. Yet this kind of thinking pervades plans for future decarbonization…

The IPCC models, for instance, depend heavily on carbon capture and storage, also called carbon capture and sequestration (either way, CCS). Some advocates, including companies such as ExxonMobil, say CCS is a proven, mature technology because for years industry has pumped carbon dioxide or other substances into oil fields to flush more fossil fuel out of the ground. But carbon dioxide doesn’t necessarily stay in the rocks and soil. It may migrate along cracks, faults and fissures before finding its way back to the atmosphere. Keeping pumped carbon in the ground—in other words, achieving net negative emissions—is much harder. Globally there are only handful of places where this is done. None of them is commercially viable…

One site is the Orca plant in Iceland, touted as the world’s biggest carbon-removal plant. Air-captured carbon dioxide is mixed with water and pumped into the ground, where it reacts with the basaltic rock to form stable carbonate minerals. That’s great. But the cost is astronomical—$600 to $1,000 per ton—and the scale is tiny: about 4,000 tons a year. By comparison, just one company, tech giant Microsoft (which has pledged to offset all its emissions), produced nearly 14 million tons of carbon in 2021. Or look at carbon capture at the Archer Daniels Midland ethanol plant in Illinois, which, since 2017, has been containing carbon at a cost to the American taxpayer of $281 million (more than half the total project cost); at the same time, overall emissions from the plant have increased. And the total number of people employed in the project? Eleven. Meanwhile numerous CCS plants have failed. In 2016 the Massachusetts Institute of Technology closed its Carbon Capture and Sequestration Technologies program because the 43 projects it was involved with had all been canceled, put on hold or converted to other things.

It’s obvious why ExxonMobil and Archer Daniels Midland are pushing CCS. It makes them look good, and they can get the taxpayer to foot the bill. The Infrastructure Investment and Jobs Act, passed last year, contained more than $10 billion for efforts to develop carbon-capture technologies. In contrast, the act contained merely $420 million for renewable energy—water, wind, geothermal and solar.

Science Senator. It’s called science.