@USGS Monthly Groundwater News and Highlights: May 1, 2017

Click here to read the news. Here’s an excerpt:

A new USGS assessment suggests that brackish groundwater could help stretch limited freshwater supplies. The amount of fresh or potable groundwater in storage has declined for many areas in the United States and has led to concerns about the future availability of water for drinking-water, agricultural, industrial, and environmental needs. Use of brackish groundwater could supplement or, in some places, replace the use of freshwater sources and enhance our Nation’s water security.

@USGS: National Hydrography Dataset / Watershed Boundary Dataset Map Service Improvement

Here’s the release from the USGS:

As part of an ongoing effort to improve the suite of hydrography web-based map services, the USGS will separate the services for the National Hydrography Dataset (NHD) and Watershed Boundary Dataset (WBD).
Currently, the NHD dynamic service, “Hydrography (inc. watersheds)” includes both NHD and WBD layers. The existing address will be updated to include only NHD layers, and a new endpoint will be designated for WBD services.

The NHD and WBD represent inland waters for the U.S. as a part of The National Map. The NHD represents the drainage network with features such as rivers, streams, canals, lakes, ponds, coastline, dams, and streamgages. The WBD represents drainage basins as enclosed areas in eight different size categories.

Focusing these services to two endpoints enables the USGS to isolate changes and issues, and continue to improve the performance of each set of services independently. When complete, users will have the choice to consume the services of NHD or WBD independently. Accessing the WBD services will not require users to consume the additional NHD layers, and accessing NHD services will not require users to have to consume the additional WBD layers. Separating the services and increasing resources available has improved performance.

This change will impact applications presently consuming the combined NHD and WBD layers from the existing service address. Once this is implemented, users who would like to consume the WBD dynamic services will need to use the new service endpoint. In addition, users currently consuming the combined service may need to update application configurations for display of the desired layers.

Additionally, two NHD/WBD-related web services are being retired at the end of April. See the summary below for more information.

An announcement will be posted in the “What’s New” section on the The National Map website once changes are implemented.

Summary of changes to National Map Hydrography service endpoints

New – Hydrography data service endpoints:

1. National Hydrography Dataset

  • Function: Provides national hydrography data
  • Endpoint: https://services.nationalmap.gov/arcgis/rest/services/nhd/MapServer
  • This NHD endpoint remains the same, the WBD layers have been removed.
  • 2. National Watershed Boundary Dataset

  • Function: Provides watershed boundary data
  • Endpoint: https://services.nationalmap.gov/arcgis/rest/services/wbd/MapServer
  • 3. Hydrography (cached)

  • Function: Provides a fast USGS Topo styled hydrography overlay
  • Endpoint: https://basemap.nationalmap.gov/arcgis/rest/services/USGSHydroCached/MapServer
  • This service was announced and made public March 2017 and is also available as a WMTS service.
  • Retiring at the end of April 2017

  • NHD Base Map (former primary tile cache)
  • Function: Cached base map of hillshade, NHD and WBD combined
  • Endpoint: https://basemap.nationalmap.gov/arcgis/rest/services/USGSHydroNHD/MapServer
  • USGS NHD Base Map – Below 18K Scale Dynamic

  • Function: Dynamic map service used below 18K to work along with older NHD Base Map cache. This also contains hillshade, NHD and WBD combined
  • Endpoint: https://services.nationalmap.gov/arcgis/rest/services/USGSHydroNHDLarge/MapServer
  • For any questions, comments, or concerns regarding this update, please contact Ariel Doumbouya (atdoumbouya@usgs.gov).

    Webcast: Stormwater Contaminants of Emerging Concern — @theCWPInc

    Emerging contaminant transport. Graphic via the USGS.

    Click here to register for the webcast from The Center for Watershed Protection. Here’s their pitch:

    Newly recognized contaminants of emerging concern (CECs) include a broad list of synthetic or naturally occurring chemicals (e.g., pharmaceuticals, synthetic fragrances, detergents, disinfectants, plasticizers, preservatives) or any microorganisms that have the potential to cause adverse ecological and(or) human health effects. Advances in our ability to detect and study CECs in the environment have shown that they are widespread throughout the aquatic ecosystem, and some studies are showing adverse impacts to aquatic organisms and public health. While a major source of CECs is POWT discharges, illicit discharges containing sewage into the municipal separate sewer system is a major pathway for CECs to be delivered to urban and suburban stream systems. Illicit discharge detection and elimination (IDDE) systems have the potential to be effective tools to mitigate the effect of CECs on the environment. This webcast focuses on CECs and the potential for IDDE programs to reduce their impacts.

    @USGS: Assessment of Moderate- and High-Temperature Geothermal Resources of the United States

    Map showing the location of identified moderate-temperature and high-temperature geothermal systems in the United States. Each system is represented by a black dot. Credit USGS.
    Map showing the location of identified moderate-temperature and high-temperature geothermal systems in the United States. Each system is represented by a black dot. Credit USGS.

    Here’s the release from the USGS:

    Scientists with the U.S. Geological Survey (USGS) recently completed an assessment of our Nation’s geothermal resources. Geothermal power plants are currently operating in six states: Alaska, California, Hawaii, Idaho, Nevada, and Utah. The assessment indicates that the electric power generation potential from identified geothermal systems is 9,057 Megawatts-electric (MWe), distributed over 13 states. The mean estimated power production potential from undiscovered geothermal resources is 30,033 MWe. Additionally, another estimated 517,800 MWe could be generated through implementation of technology for creating geothermal reservoirs in regions characterized by high temperature, but low permeability, rock formations.

    @USGS: Characterization and relation of precipitation, streamflow, and water-quality data at the U.S. Army Garrison Fort Carson and Piñon Canyon Maneuver Site, Colorado, water years 2013–14

    fortcarsonpinoncanyonusgs

    Click here to read the report. Here’s the abstract:

    To evaluate the influence of military training activities on streamflow and water quality, the U.S. Geological Survey, in cooperation with the U.S. Department of the Army, began a hydrologic data collection network on the U.S. Army Garrison Fort Carson in 1978 and on the Piñon Canyon Maneuver Site in 1983. This report is a summary and characterization of the precipitation, streamflow, and water-quality data collected at 43 sites between October 1, 2012, and September 30, 2014 (water years 2013 and 2014).

    Variations in the frequency of daily precipitation, seasonal distribution, and seasonal and annual precipitation at 5 stations at the U.S. Army Garrison Fort Carson and 18 stations at or near the Piñon Canyon Maneuver Site were evaluated. Isohyetal diagrams indicated a general pattern of increase in total annual precipitation from east to west at the U.S. Army Garrison Fort Carson and the Piñon Canyon Maneuver Site. Between about 54 and 79 percent of daily precipitation was 0.1 inch or less in magnitude. Precipitation events were larger and more frequent between July and September.

    Daily streamflow data from 16 sites were used to evaluate temporal and spatial variations in streamflow for the water years 2013 and 2014. At all sites, median daily mean streamflow for the 2-year period ranged from 0.0 to 9.60 cubic feet per second. Daily mean streamflow hydrographs are included in this report. Five sites on the Piñon Canyon Maneuver Site were monitored for peak stage using crest-stage gages.

    At the Piñon Canyon Maneuver Site, five sites had a stage recorder and precipitation gage, providing a paired streamflow-precipitation dataset. There was a statistically significant correlation between precipitation and streamflow based on Spearman’s rho correlation (rho values ranged from 0.17 to 0.35).

    Suspended-sediment samples were collected in April through October for water years 2013–14 at one site at the U.S. Army Garrison Fort Carson and five sites at the Piñon Canyon Maneuver Site. Suspended-sediment-transport curves were used to illustrate the relation between streamflow and suspended-sediment concentration. All these sediment-transport curves showed a streamflow dependent suspended-sediment concentration relation except for the U.S. Geological Survey station Bent Canyon Creek at mouth near Timpas, CO.

    Water-quality data were collected and reported from seven sites on the U.S. Army Garrison Fort Carson and the Piñon Canyon Maneuver Site during water years 2013–14. Sample results exceeding an established water-quality standard were identified. Selected water-quality properties and constituents were stratified to compare spatial variation among selected characteristics using boxplots.

    Trilinear diagrams were used to classify water type based on ionic concentrations of water-quality samples collected during the study period.

    At the U.S. Army Garrison Fort Carson and the Piñon Canyon Maneuver Site, 27 samples were classified as very hard or brackish. Seven samples had a lower hardness character relative to the other samples. Four of those nine samples were collected at two U.S. Geological Survey stations (Turkey Creek near Fountain, CO, and Little Fountain Creek above Highway 115 at Fort Carson, CO), which have different geologic makeup. Three samples collected at the Piñon Canyon Maneuver Site had a markedly lower hardness likely because of dilution from an increase in streamflow.

    What different types of aerial photographs are available through the USGS?

    Landsat view of Colorado via the USGS.
    Landsat view of Colorado via the USGS.

    Here’s the FAQ page from the United States Geological Survey. Here’s an excerpt:

    What different types of aerial photographs are available through the USGS?

    The aerial photographs date as far back as the 1940’s for the United States and its territories. Availability of specific coverage, film type, and acquisition dates vary from agency to agency.

    The Earth Resources Observation and Science Center (EROS) in Sioux Falls, SD has digitized over 6.4 million frames of aerial film creating medium-resolution digital images (400 dpi) and associated browse images for online viewing. Products can be downloaded at no cost through EarthExplorer or GloVis. Several kinds of aerial photos are available.

  • CIR (color infrared) film, originally referred to as camouflage-detection film, differs from conventional color film because its emulsion layers are sensitive to green, red, and near-infrared radiation (0.5 micrometers to 0.9 micrometers). Used with a yellow filter to absorb the blue light, this film provides sharp images and penetrates haze at high altitudes. Color infrared film also is referred to as false-color film.
  • Black-and-white panchromatic (B/W) film primarily consists of a black-and-white negative material with a sensitivity range comparable to that of the human eye. It has good contrast and resolution with low graininess and a wide exposure range.
  • .

  • Black-and-white infrared (BIR) film, with some exceptions, is sensitive to the spectral region encompassing 0.4 micrometers to 0.9 micrometers. It is sometimes referred to as near-infrared film because it utilizes only a narrow portion of the total infrared spectrum (0.7 micrometers to 0.9 micrometers).
  • Natural color (also referred to as conventional or normal color) film contains three emulsion layers which are sensitive to blue, green, and red (the three primary colors of the visible spectrum). This film replicates colors as seen by the human eye.
  • Photographic reproduction of images from the USGS film archives ceased on September 3, 2004. For those who specifically need paper or film products, there is a list of USGS Business Partners who provide aerial photographic research and image printing services.

    Learn more:

    Maps, Imagery, and Publications

    National Aerial Photography Provgram

    National High Altitude Photography Program
    EROS (Find Data)

    LandsatLook Viewer

    Earth Observing-1 (EO-1)

    @USGS: Groundwater Discharge to Upper #ColoradoRiver Basin Varies in Response to #Drought #COriver

    Spring sampling location along Little Sandy River in southern Wyoming. Photo credit: Chris Shope, USGSPublic domain
    Spring sampling location along Little Sandy River in southern Wyoming. Photo credit: Chris Shope, USGSPublic domain

    Here’s the release from the USGS:

    USGS scientist collects noble gas sample from spring site near Roaring Judy, Colorado. Photo credit: Bert Stolp, USGS. Public domain
    USGS scientist collects noble gas sample from spring site near Roaring Judy, Colorado. Photo credit: Bert Stolp, USGS. Public domain

    Assessing age of groundwater to determine resource availability

    Groundwater discharge that flows into the Upper Colorado River Basin varies in response to drought, which is likely due to aquifer systems that contain relatively young groundwater, according to a new U.S. Geological Survey study published in Hydrogeology Journal.

    The Colorado River and its tributaries provide water to more than 40 million people in seven states, irrigate more than 5.5 million acres of land, and support hydropower facilities. More than half of the total streamflow in the UCRB originates from groundwater. Reductions in groundwater recharge associated with climate variability or increased water demand will likely reduce groundwater discharge to streams.

    This is the first study that examines the short-term response of groundwater systems to climate stresses at a regional scale by assessing groundwater age. USGS scientists determined the age of groundwater by sampling the water flowing from nineteen springs in the UCRB. Age-tracing techniques can assess how long it takes groundwater to travel from the time it enters the aquifer system as precipitation to when the groundwater exits to springs and streams. Scientists compared eight of the springs with historical discharge and precipitation records with the groundwater age to better understand how aquifers have responded to drought. These findings helped scientists understand the variability and timing of groundwater discharge associated with drought.

    “About half of the springs analyzed in the Upper Colorado River Basin contained young groundwater, which was surprising,” said USGS scientist and lead author of the study John Solder. “These findings suggest that shallow aquifers, which are more responsive to drought than deeper systems, may be significant contributors to streamflow in the region.”

    Results show that if springs contain mostly older water, groundwater discharge is less variable over time and takes longer to respond to drought conditions. Springs that contain predominately young water, around 80 years old or less, are more likely to vary seasonally and respond rapidly to drought conditions. These results indicate that young groundwater resources are responsive to short-term climate variability.

    “Sampling 19 springs in a very large basin is just the start, and further studies are needed to better understand the groundwater resources of this specific region,” said Solder. “Determining groundwater age has promise in predicting how these systems will respond in the future and allows us to assess resource vulnerability where no historical records are available.”

    This study was funded by the USGS National Water Census, a research program focusing on national water availability and use at the regional and national scales. Research is designed to build decision support capacity for water management agencies and other natural resource managers.

    Water quality and sampling equipment deployed at spring site near Roaring Judy, Colorado. Public domain
    Water quality and sampling equipment deployed at spring site near Roaring Judy, Colorado. Public domain