#Runoff news: The #ArkansasRiver is still running low as compared to average, along with many #Colorado streams

From KOAA.com (Bill Folsom):

This year the run-off in Colorado is late. “The native water hasn’t started to flow yet,” said Roy Vaughan with the Bureau of Reclamation. Vaughn is part of the team that helps manage what stored and released from Lake Pueblo Reservoir.

Water released from the dam is currently much less than typical. “We’re releasing about 15 percent of what we normally do this time of year.” The number is a correlation with the amount of run-off flowing into the reservoir. Run-off is late this year. “We see it start and then the weather changes, it cools down and it slows up again. It’s about three weeks late.” For now, spillways are mostly dry.

Click on the graphic for the USGS Water Watch interactive map for Colorado.

@USGS explainer, “Base Flow in Rivers”

Click here to go to the USGS website. Here’s an excerpt:

When a drought hits and little or no rain has fallen in a long time, you might expect small streams and even larger rivers to just dry up, right? In many cases, they don’t. Streamflow might lessen to a trickle or so, but water continues to flow. How is that possible? Read on to find out how “base flow”, which is water seeping into the stream from groundwater, helps keep water in streams during droughts.

Groundwater movement via the USGS

@USBR bug flows show promise in the #GrandCanyon #ColoradoRiver #COriver

Glen Canyon Dam

From the Associated Press (Felicia Fonseca) via The Salt Lake Tribune:

The bug flows are part of a larger plan approved in late 2016 to manage operations at Glen Canyon Dam, which holds back Lake Powell. The plan allows for high flows to push sand built up in Colorado River tributaries through the Grand Canyon as well as other experiments that could help native fish such as the endangered humpback chub and non-native trout.

Researchers are recommending three consecutive years of bug flows. Scott VanderKooi, who oversees the Geological Survey’s Grand Canyon Monitoring and Research Center in Flagstaff, said something about the weekend steady flows is encouraging bugs to emerge as adults from the water, which might lead to more eggs, more larvae and more adults. But, more study is needed.

Researchers also are hopeful rare insects such as stoneflies and mayflies will be more frequent around Lees Ferry, a prized rainbow trout fishery below Glen Canyon Dam.

The bug flows don’t change the amount of water the U.S. Bureau of Reclamation must deliver downstream through Lake Mead to Arizona, Nevada, California and Mexico. The lower levels on the weekend are offset by higher peak flows for hydropower during the week, the agency said.

Hydropower took a hit of about $165,000 — about half of what was expected — in the 2018 experiment, the Geological Survey said.

The agency recorded a sharp increase in the number of caddisflies through the Grand Canyon. Citizen scientists along the river set out plastic containers with a battery-powered black light for an hour each night and deliver the bugs they capture to Geological Survey scientists, about 1,000 samples per year.

In 2017, the light traps collected 91 caddisflies per hour on average, a figure that rose to 358 last year, outpacing the number of midges for the first time since the agency began tracking them in 2012, VanderKooi said.

The number of adult midges throughout the Grand Canyon rose by 34% on weekends versus weekdays during last year’s experiment. Intensive sampling one weekend in August showed an 865% increase in midges between Glen Canyon Dam and Lees Ferry, the agency said.

“For a scientist, this is really great,” VanderKooi said. “This is the culmination of a career’s worth of work to see this happen, to see from your hypothesis an indication that you’re correct.”

The Arizona Game and Fish Department also surveyed people who fished from a boat at Lees Ferry during the experiment to see if the bug flows made a difference. Fisheries biologist David Rogowski said anglers reported catching about 18% more fish.

He attributed that to the low, steady flows that allow lures to better reach gravel bars, rather than the increase in bugs.

@USGS: Significant Milestone in Whooping Crane Recovery

Here’s the release from the USGS:

This week marks a significant milestone in the conservation and recovery of the endangered whooping crane. On March 11 and 13, the U.S. Geological Survey’s Patuxent Wildlife Research Center transferred its last two cranes of the approximately 75 that were in its flock to other institutions, closing out more than 50 years of the center’s whooping crane research and captive breeding success.

Researchers at the center pioneered the science informing much of the birds’ recovery to date, including assessing dietary needs, developing breeding methods and techniques for raising chicks, and preparing birds for reintroduction into their natural habitats. Over the years, the program at Patuxent has naturally transitioned to a more operational role of producing chicks for reintroduction. With other institutions capable of filling that role, the USGS has transferred the birds to organizations in North America interested in continuing the captive breeding and reintroduction efforts, allowing the USGS to focus its resources on other species at risk and in need of scientific research.

“Whooping cranes are still endangered, but the overall population has grown more than tenfold in the last 50 years since Patuxent’s program began,” said John French, a USGS biologist and director of the USGS Patuxent Wildlife Research Center. “The end of the USGS program is an indication of just how far we’ve come in our research and recovery efforts and is a tribute to the numerous researchers from the U.S. Geological Survey and numerous collaborators and partners who dedicated five decades to help chart the course for the recovery of this iconic species.”

Whooping cranes are North America’s largest bird and a longtime symbol of the American conservation movement. They are native to North America and their current population is estimated at more than 700 birds. In 1942, the entire population declined to 22 birds. This decline was primarily due to human actions, such as overhunting and the development of shorelines and farmland that led to habitat loss.

Whooping crane adult and chick. Credit: USGS (public domain)

The Start of the Largest Whooping Crane Captive Breeding Program

The captive breeding program began in 1967 when biologists from the U.S. Fish and Wildlife Service captured a young whooping crane and collected 12 eggs from the wild in Canada. All were sent to the Patuxent center, which was then under the USFWS. The center was transferred to the USGS in 1996. The overall conservation goal for the species has been to help establish new populations in places where the large, majestic birds once lived. The Patuxent effort became the world’s largest whooping crane captive breeding program, and a model for science-based reintroduction of endangered species.

USGS scientist training whooping crane chicks to follow an ultralight aircraft. Credit: USGS (public domain)

USGS Role in Breeding and Raising Whooping Crane Chicks

“When the staff at Patuxent first got involved in whooping crane recovery, new scientific research was needed on just about every aspect of whooping crane biology,” said French. “That research was used to establish captive breeding programs, to develop methods of reintroduction and, more recently, to assess how the reintroduced populations are faring.”

Scientists sought ways to increase the number of eggs laid and chicks hatched. In the wild, whooping cranes typically lay two eggs at a time and only one clutch (group) per year. If the eggs don’t survive or are lost to predators, a whooping crane may lay a second or even a third clutch that year. In captivity at Patuxent, scientists removed eggs from the parents’ nests for incubation in the lab, which encouraged re-nesting and increased the total number of eggs and chicks produced. Sandhill cranes were often used to incubate the extra eggs.

Methods developed at Patuxent for artificial insemination of breeding females have allowed the production of chicks with a healthy genetic heritage and allowed the preservation of genetic diversity in the captive flock.

From the moment a whooper chick hatched, technicians interacted with them only when wearing a crane costume. Costumed technicians taught the chicks how to find food, purred or played brood calls to the chicks like their parents would, and introduced them to wetland habitats. The costume prevented chicks from imprinting on—or attaching themselves to—humans. This is especially valuable after release, as it is beneficial for the chicks to act as natural in their habitat as possible.

Various methods were also developed for preparing whooping crane chicks for reintroduction to the wild. Federal scientists and partners developed and improved the method of training young crane chicks to follow an ultralight aircraft, which was used to teach the fledglings a migration route south for their first winter.

The Next Phase and Transferring Cranes

Patuxent’s cranes were transferred to other institutions that can produce chicks for reintroduction. These institutions are the Smithsonian Conservation Biology Institute in Front Royal, Virginia; the White Oak Wildlife Conservation in Yulee, Florida; the International Crane Foundation in Baraboo, Wisconsin; the Dallas, Houston, Abilene and San Antonio Zoos in Texas; the Oklahoma City Zoo in Oklahoma; the Omaha Zoo in Nebraska; the Freeport-McMoRan Audubon Species Survival Center in Louisiana; and the Calgary Zoo and the African Lion Safari in Canada.

USGS scientists use a whooping crane puppet to train a newly hatched chick to eat. Credit: Jonathan Fiely, USGS Patuxent Wildlife Research Center (public domain)

Conservation and Recovery Plan

Whooping crane captive breeding for reintroduction in North America is one part of the strategy for conservation and restoration of the species. A joint U.S.-Canada International Recovery Team develops and guides the strategy for whooping crane management, which is detailed in the International Recovery Plan for the Whooping Crane. The team also oversees the management of wild and reintroduced populations of whooping cranes.

More Information

Learn more about the USGS Patuxent Wildlife Research Center’s captive breeding program and role in whooping crane research at: https://www.usgs.gov/centers/pwrc/science/whooping-crane-restoration

Whooping crane standing in shallow water. Credit: Randolph Femmer, USGS (public domain)
Young whooping crane and costumed USGS caretakers at the USGS Patuxent Wildlife Research Center. Credit: Jonathan L. Fiely, USGS Patuxent Wildlife Research Center (public domain)

@USGS and Colorado School of Mines announce long-term partnership

Junior environmental engineering students measure water quality parameters for their field session client, Clear Creek Watershed Foundation. (Credit: Deirdre O. Keating)

Here’s the release from the USGS (David Ozman):

CSM to be new home of USGS labs, 150 government scientists

Today, U.S. Secretary of the Interior Ryan Zinke joined Paul C. Johnson, president of Colorado School of Mines, to announce a long-term partnership between the university and the U.S. Geological Survey (USGS). The partnership will bring more than 150 USGS scientists and their minerals research labs to the university’s Golden, Colorado, campus where government scientists and Mines faculty and students will work together in a new state-of-the-art facility. Johnson and Zinke were joined at today’s announcement by Senator Cory Gardner and Congressman Ed Perlmutter, as well as Mines Board of Trustees Chairman Thomas E. Jorden and Roseann Gonzales-Schreiner, USGS Associate Director for Administration and Acting Director of the Southwest Region.

“This is a great day for the USGS and for Colorado School of Mines,” said Secretary Zinke. “The majority of USGS’s work is on federal lands in the west, but their research is also used by government agencies, the private sector, universities, nonprofits and partners all over the world. Partnering with Colorado School of Mines, a world-class earth science research institution, and co-locating our scientists and researchers creates incredible opportunities to spur innovation and transformational breakthroughs, while also providing an incredible pool of talent from which to recruit.”

“With this new facility, the USGS and the School of Mines will have a revolutionary shared workspace for the world-class research and education that the USGS and the Colorado School of Mines are famous for delivering to the country,” said USGS Director Jim Reilly. “We look forward to this expansion of our efforts in the great State of Colorado and I’m distinctly honored to be the Director at the time of this development.”

“The expanded USGS presence at Mines will capitalize on our collective expertise to address the availability of mineral and energy resources, environmental challenges and geo-environmental hazards, all of which are of critical importance to national security and the economies of Colorado and the nation. It will also create an incredibly unique educational environment that will produce the leaders we need to tackle future challenges related to exploration and development of resources here on Earth and in space, subsurface infrastructure and sustainable stewardship of the Earth,” said Mines President Paul C. Johnson. “We want to thank our Colorado congressional delegation, especially Rep. Ed Perlmutter and Sen. Cory Gardner, for their help in forging this exciting partnership with the USGS.”

“I’ve been working hard to convince everyone that Colorado and the School of Mines are a perfect match for the United States Geological Survey,” said Senator Cory Gardner (R-CO). “This move highlights the scientific leadership of our state. We will be putting USGS in a modern facility in a state where research on their core mission areas can be performed right out their back door. Their water resource research will be particularly useful to Colorado and other western states as we continue to grapple with long-term drought. I’d like to welcome Dr. Reilly and his team to the campus and thank Secretary Zinke for his leadership on this issue.”

“This new Subsurface Frontiers Building on the Mines Campus will be a tremendous asset for their faculty and students, and housing USGS staff and lab space will further cement the strong relationship between Mines, USGS and the Department of the Interior,” said Congressman Ed Perlmutter (D-CO-7). “This was a team effort, and I want to thank everyone for their hard work to make this happen.”

USGS and Mines, renowned for their expertise in the earth sciences and engineering, are expanding a long-standing relationship to catalyze even greater collaboration among USGS scientists and Mines faculty and students in the name of tackling the nation’s natural resource, security and environmental challenges, and exploring frontiers where the next innovations in earth and space resources, technology and engineering will occur. The relationship between Mines and the USGS goes back more than 40 years, with the USGS Geologic Hazards Science Center and its National Earthquake Information Center already calling the Mines campus home.

@USGS Crews Work Fast to Capture Evidence of Devastating Carolina Floods

Here’s the release from the USGS (Heather Dewar:

To learn more about USGS’ role providing science to decision makers before, during and after #Florence, visit the #USGS Hurricane Florence page at https://www.usgs.gov/florence

The floodwaters that covered wide swaths of the Carolinas’ coastal plain are finally receding, more than two weeks after Hurricane Florence made landfall Sept. 14 near Wrightsville Beach, North Carolina, and U.S. Geological Survey hydrographers are moving in rapidly to the areas where the flooding lingered longest. About 30 flood experts are in the second week of a high water mark campaign, traveling from one hard-hit community to the next, searching neighborhood by neighborhood and sometimes door to door for physical evidence of flooding.

Double-checking a high water mark on a church door near Maxton, NC September 2018 via USGS.

The USGS experts are looking for telltale lines of seeds, leaves, grass blades and other debris left behind on buildings, bridges, other structures and even tree trunks as floodwaters recede. Once they find these high water marks, they label them, photograph them, survey them, and record crucial details about them.

The USGS flood experts’ field work is highly skilled and time-sensitive, because high water marks can be obliterated by weather and by property owners’ cleanup efforts. Hydrographers have been in the field collecting high water marks each day since Sept. 18, working mostly in two-person teams and moving as quickly as receding waters and the scope of the work permits. The teams from the USGS South Atlantic Water Science Center, which covers the Carolinas and Georgia, have recorded more than 600 high water marks in North and South Carolina and surveyed at least 365 of those. Field crews expect to record many more as they move into communities like Conway, South Carolina, where the floodwaters have not yet finished their retreat. You can see some preliminary results of their work at the USGS Flood Event Viewer for Hurricane Florence: https://stn.wim.usgs.gov/FEV/#FlorenceSep2018

Why is this fieldwork important? The physical signs of flooding provide valuable information that can confirm or correct other lines of evidence. Among these are measurements from a network of about 475 permanent and temporary river and streamgages that were in place in North and South Carolina when Florence struck; more than 175 stream and river flow measurements taken by field crews after the storm on flood-swollen rivers, streams and even roads; satellite photos and imagery from unmanned aerial vehicles (or drones); and computer modelled flood projections. Taken together, all this evidence will allow USGS experts to reconstruct precisely where, when, at what depth, and in what volume floodwaters inundated the region.

USGS hydrologic technician Rob Forde flags a high water mark above the eaves at Presbyterian Church of the Covenant in Spring Hill, NC in the wake of flooding brought on by Hurricane Florence. Credit: Kagho Asongu, USGS. Public domain.

Right after the storm, the USGS’ early information from high water marks can help emergency managers decide where to locate relief centers, so that aid can reach the most severely affected communities quickly, and can help the U.S. Army Corps of Engineers manage flood control.

In the coming weeks USGS flood information can help the Federal Emergency Management Agency to discern the difference between wind and water damage – important information for property owners and insurers. Over the long term, it can help emergency managers plan better for future floods; improve the computer models used by the National Weather Service to forecast flooding; and provide information used by FEMA to update the nationwide flood zone maps that underpin the federal flood insurance program.

“I am proud of the USGS staff’s speed, thoroughness and accuracy as they do this essential work in difficult conditions, and under the pressure of time,” said USGS South Atlantic Water Science Center director Eric Strom. “The team began working well before Florence made landfall, when field crews began installing storm-tide sensors along the coast. Right after the storm passed, we mobilized as many as 60 people at a time to fix or relocate streamgages that were damaged or destroyed, monitor the flooding, and work with forecasters and emergency managers to get them the up-to-date flood information they needed. And now, because the rivers have receded so slowly, we’re in the midst of a long high water mark campaign in two states.

“It’s been a sustained, coordinated effort in response to a hurricane that triggered record-setting floods.”

Preliminary USGS data indicates that Florence’s heavy rains resulted in 19 water level records on rivers and streams in North Carolina and 10 records in South Carolina. Rivers that reached or exceeded the major flood stage heights forecast by the National Weather Service included the Cape Fear, Northeast Cape Fear, Neuse, Lumber, Waccamaw, Pee Dee, Little Pee Dee, Black and Lynches rivers.

This flood event viewer, dated Oct. 3, 2018, shows the extent and type of information collected by USGS hydrologists in North and South Carolina in the wake of historic flooding brought on by Hurricane Florence. Credit: USGS. Public domain.

The flooding in the Carolinas was long-lasting, with several rivers experiencing two peaks of high water flow or flood stage. The first one happened as local rainfall flowed into rivers and streams, and the second one came as rain that fell near the rivers’ headwaters worked its way downstream. In Goldsboro, North Carolina, about 100 miles inland from Florence’s landfall, the Neuse River escaped from its banks, crested at 27.6 feet on September 18, and lingered above the 18-foot flood stage mark for almost a week. The last two rivers to peak were both in South Carolina: the Little Pee Dee on Sept. 25 and the Waccamaw River on Sept. 26.

“Unfortunately, our experience dating back to the 1940s shows that the Carolina coastal plain is a flood-prone region,” said the center’s South Carolina-based associate director John Shelton, who was the on-site coordinator for much of the USGS response. “The scientific knowledge we’re gaining now will be put to good use helping to protect lives and property if and when floods strike this area again.”

For more than 125 years, the USGS has monitored flow in selected streams and rivers across the U.S. The information is routinely used for water supply and management, monitoring floods and droughts, bridge and road design, determination of flood risk and for many recreational activities.