Kansas’ invisible water crisis — The Wichita Eagle

ogallalahighplainsdepletions2011thru2013viausgs

From The Wichita Eagle (Lindsay Wise):

…But irrigation soon could end on [Brant] Peterson’s southwest Kansas farm. The wells under his land in Stanton County are fast running dry as farmers and ranchers across the Great Plains pump the Ogallala faster than it can be replenished naturally.

Three of his wells are already dry.

Within five years, Peterson estimates, he likely won’t be able to irrigate at all.

Wet and dry: A country divided

While the east half of the country generally receives at least 25 inches of rain a year, much of the west is dryer.

This means much of our country’s corn and hogs are farmed west of the 100th meridian. Meanwhile, in the Great Plains, milo, or grain sorghum, has become a popular crop due to its reduced need for water, and cattle farming has long been popular out west…

Western Kansas’ only significant water source is the Ogallala…

The vast freshwater reservoir beneath the prairie formed 5 million to 10 million years ago as streams draining from the Rocky Mountains deposited water in the clay, sand and gravel beneath the Great Plains.

The water lay there undisturbed for epochs until enterprising homesteaders who settled the West discovered the liquid bonanza that would make their arid land bloom.

Now, in a geological blink of an eye, the Ogallala, which made the Great Plains the nation’s breadbasket, is in peril…

The disappearing water supply poses a twofold danger. It could end a way of life in a region where the land and its bounty have been purchased by the toil and sweat of generations of farmers.

It also threatens a harvest worth $21 billion a year to Kansas alone and portends a fast-approaching, and largely unstoppable, water crisis across the parched American West.

With water levels already too low to pump in some places, western Kansas farmers have been forced to acknowledge that the end is near. That harsh reality is testing the patience and imagination of those who rely on the land for their livelihoods.

As they look for survival, farmers are using cutting-edge technologies to make the most efficient use of the water they have left. They’re contemplating something almost unimaginable just a generation ago: voluntary pacts with their neighbors to reduce irrigation.

And many are investing their long-term hopes in an astronomically expensive water transportation project that isn’t likely ever to be built.

The Arkansas River, which once flowed out of Colorado into western Kansas, is nothing but a dry ditch now, its riverbed reduced to a rugged obstacle course for all-terrain vehicles.

And average rainfall here is just 14 to 16 inches a year, nowhere near enough to replace the water that farmers draw from the Ogallala.

Kansas enjoyed a rainier-than-normal spring this year, easing several years of drought conditions throughout the state. But the relief is temporary.

The storms that soaked the state in recent months won’t alter the Ogallala’s fate, experts say…

Once emptied, it would take 6,000 years to refill the Ogallala naturally…

The Ogallala Aquifer supplies water for 20 percent of the corn, wheat, sorghum and cattle produced in the U.S.

It sprawls 174,000 square miles across eight states, from South Dakota to Texas, and can hold more than enough water to fill Lake Huron and part of Lake Ontario.

But for every square mile of aquifer, there’s a well. About 170,000 of them. Ninety percent of the water pumped out is used to irrigate crops…

Over the years, there have been multiple attempts to address the rapid decline of the aquifer. Water rights holders in much of western Kansas had to install flow meters in all their wells starting in the mid-1990s. Soon all wells in Kansas will have to be metered. And the state government has stopped issuing new permits to pump water from the Ogallala in areas of western Kansas where water levels have dropped the most.

Now, Kansas Gov. Sam Brownback has pledged to make water policy a central pillar of his administration. The final draft of his 50-year “water vision” for the state, released in January, outlines an incentive and education-based approach focused on encouraging voluntary, coordinated conservation efforts by the farmers who have the most to lose by the aquifer’s decline.

So far, however, farmers have agreed to limit water use in just part of two northwestern counties. A group of farmers in Sheridan and Thomas counties established a Local Enhanced Management Area, or LEMA, in 2012 to cut water use by 20 percent over five years.

It seems to be working: In the first year, participants in the LEMA used about 2.5 inches less water for irrigation than their neighbors and produced just two bushels less per acre, on average.

A proposal to create another LEMA in west-central Kansas was voted down last year by water rights holders.

“The problem is everybody wants to be democratic, and you have people for and you have some people against,” said Bill Golden, an agricultural economist at Kansas State.

It isn’t easy to convince individuals to put their profits at risk to preserve a common resource, especially when some farmers have more water left than others, Golden said.

“But I think that we will probably see more LEMAs in the coming years,” he said. “That is the most acceptable answer. I mean, we’re going to run out of water. Nobody’s talking about saving the aquifer and not using the water. The question is, can we extend the life of the aquifer and make it a soft landing?”

For now, that leaves individual farmers making their own decisions about how best to manage water on their land.

Ten miles east of Peterson’s farm, in Grant County, Kan., Clay Scott parked his Dodge pickup on a country road and reached for his iPad.

A few hundred feet away, a solar panel planted in a field of wheat powered a probe that measures soil moisture at different depths.

Right now the probe told Scott’s iPad that he could hold off on watering the field. His sprinklers lay idle.

“People think that we waste our water out here,” Scott said, “and we just kind of grin because we work so hard to use that water.”

In addition to the soil moisture probes linked to his iPad, Scott consults satellites and radar data to track every shift in the weather and drop of rain that falls in his fields so he can minimize irrigation. He uses low-till techniques to preserve the soil and experiments with genetically engineered drought-resistant corn. He installed more efficient nozzles on his center-pivot sprinklers.

And he’s trying out a new device called a “dragon line,” which drags perforated hoses behind a center pivot to deposit water directly on the ground, reducing pooling and evaporation.

Scott’s version of high-tech farming would be unrecognizable to his great-grandfather, who homesteaded in nearby Stanton County around the turn of the century.

Still, despite all his efforts, Scott knows there will come a day – sooner rather than later if nothing is done – when irrigation is no longer viable in this part of Kansas.

The effects of the depleted aquifer already can be felt on Scott’s farm, where he’s had to reduce irrigation by 25 percent.

Some of his two dozen wells are pumping just 150 gallons per minute now, down from thousands of gallons per minute when they were first drilled. And as the water table drops, the energy costs of pumping from deeper underground have become higher than the cash rents Scott pays on the fields he leases.

“We’ve gone through periods where we re-drilled and tapped all but the very lowest water,” Scott said. “There are places we don’t pump the wells anymore.”

As an elected board member for the local Groundwater Management District, Scott hopes that he’ll be able to shape conservation policies that will enable his children to continue farming after him. He sees the situation in California, where the state has forced farmers to cut water use, as a cautionary tale. If farmers in Kansas don’t find ways to conserve enough water on their own, the state could enforce water rationing.

“I’ve got three boys, and a couple of them have already talked very seriously about coming back to the farm, and I’d like them to have the opportunity and ability that I’ve had to grow crops and livestock, even in a drought,” he said.

Kansas Aqueduct route via Circle of Blue
Kansas Aqueduct route via Circle of Blue

Scott’s long-term hopes rest in the construction of an $18 billion aqueduct that would import high flows off the Missouri River to water crops grown in western Kansas.

As conceived by the U.S. Army Corps of Engineers, the concrete ditch would stretch 360 miles from east to west across Kansas with 16 lift stations and massive reservoirs on either end. The proposal was met with opposition – and not a little ridicule – by the legislature in Topeka, as state lawmakers struggled to close a $400 million budget hole.

“We’re not working on it at this point,” Earl Lewis, assistant director of the Kansas Water Office, said in an interview.

Missouri Gov. Jay Nixon dismissed the aqueduct as a “harebrained” scheme that would divert river water needed for barge traffic and municipal use.

But in western Kansas, it doesn’t seem like such a crazy idea.

“When they’re flooding in the Missouri River and cities are sandbagging, it sure seems to us like we have an answer to their problems,” Scott said. “Nobody wants to build a house and see it flooded; nobody wants to plant a field and watch it wither.”

Fervent support for the project speaks to the urgency felt by Scott, Peterson and other farmers and ranchers whose livelihoods and communities depend on irrigation. They’re hoping to convince the federal government to kick in funds for the aqueduct. And they’re looking into the possibility of building it through a public-private partnership, like a toll road. Farming cooperatives in California and Colorado have expressed interest in the project, they say, and want to explore extending it farther west.

A federal engineering bailout for western Kansas isn’t very likely, however.

Kansas Sen. Pat Roberts, the Republican chairman of the Senate Agriculture Committee, said in an interview that such a costly project would be a nonstarter under Congress’ current budget caps.

“In all honestly, it’s a front-burner issue for folks in southwest Kansas, but to build that kind of aqueduct would be billions of dollars, and I just don’t think that’s feasible at this point,” Roberts said.

Barring the construction of an aqueduct, rural communities that depend on the Ogallala face a bleak future.

The state would have to cut its irrigated acres in half today to get anywhere close to sustainability, said Golden, the agricultural economist from Kansas State.

But it isn’t as simple as turning off the sprinklers.

“People survived out here on dryland farming. I can do it,” Peterson said, using the term “dryland” to refer to growing crops without irrigation. “Here’s the cost: My community is going to wither away.”

An irrigated field in southwest Kansas produces more than eight times more corn per acre on average than a field that isn’t irrigated, according to the Kansas Department of Agriculture. Land values would drop. The loss of equity and tax base would mean fewer farmers and bigger farms, consolidated school districts, and impoverished towns with declining populations.

Like any economy dependent on mining a finite resource, this one is headed for a bust, and the farmers know it.

“We can’t wait another 30 years to get our policy right,” Scott said. “The drought in California is showing what living in denial can do.”

From Science Daily:

Keith Gido, professor in the Division of Biology; Josh Perkin, 2012 Kansas State University doctoral graduate; and several co-authors have published “Fragmentation and dewatering transform Great Plains stream fish communities” in the journal Ecological Monographs.

The article documents a reduction in water flow in Great Plains streams and rivers because of drought, damming and groundwater withdrawals. This is causing a decrease in aquatic diversity in Kansas from stream fragmentation — or stretches of disconnected streams.

“Fish are an indication of the health of the environment,” Gido said. “A while back there was a sewage leak in the Arkansas River and it was the dead fish that helped identify the problem. Children play and swim in that water, so it’s important that we have a good understanding of water quality.”

Several species of fish — including the peppered chub and the plains minnow — were found to be severely declining in the Great Plains during the ecologists’ field research, which compared historic records to 110 sampling sites in Kansas between 2011-2013. Both fish species swim downstream during droughts and return during normal water flow, but the construction of dams, or stream fragmentation, prevents fish from returning upstream.

“The Great Plains region is a harsh environment and drought has always been a problem. Historically, fish were able to recover from drought by moving,” Gido said. “They could swim downstream and when the drought was over, they could swim back. Now, there are dams on the rivers and the fish are not able to recover.”

Streams in the Great Plains region have more than 19,000 human-made barriers. Gido estimates that on average, stretches of streams in the Great Plains are about six miles long. In surveying Kansas’ streams and rivers, the researchers discovered numerous small dams that do not allow enough habitat for the fish to complete their reproductive cycles. Moreover, the fish are unable to migrate in search of suitable habitat.

“Groundwater extraction exasperates the drought, and the damming of the rivers inhibits the fish from being able to recover from those conditions,” Gido said. “This is unfortunate, but there are some things we can do to help.”

Gido suggested a renewed focus to conserve water, reduce dams and make fish passageways like the one on the Arkansas River under Lincoln Street in Wichita. During the planning for the reconstruction of the Lincoln Street Bridge and the dam over the river, the city worked with wildlife agencies to build a passage that would allow fish as well as canoes and kayaks to navigate through the structure.

Similar structures could be constructed on the Kansas River to help fish migrate.

“The plains minnow is still found in the Missouri River and could recolonize the Kansas River — where they used to be the most abundance species — if there was a fish passage through some of the dams.”

More Ogallala aquifer coverage here.

Leave a Reply