Chlorine Could Increase Antimicrobial Resistance — the King Abdullah University of Science and Technology

Mutagens, such as disinfection byproducts, in treated wastewater elicit a colorimetric response in this 96-well plate. Photo credit: King Abdullah University of Science and Technology

From King Abdullah University of Science and Technology:

Ultraviolet light could thwart antimicrobial resistance by damaging DNA material in wastewater.

Conventional wastewater disinfection using chlorine could facilitate the spread of antimicrobial resistance in bacteria1. Treating some types of wastewater with ultraviolet (UV) light instead could be part of the solution2, according to a study at KAUST’s Water Desalination and Reuse Center, published in the journal Environmental Science & Technology.

Bacteria are rapidly developing mechanisms to evade the effects of antimicrobial drugs, and this resistance is increasingly threatening public health. Pharmaceutical compounds and resistant bacteria that reach municipal and agricultural wastewater are partially to blame. Interestingly, the antimicrobial resistance of bacteria in wastewater entering water treatment plants is lower than after the wastewater leaves the treatment plant.

This may be because during wastewater disinfection, genetic material breaks out of bacteria into the surrounding water. This extracellular DNA can contain antimicrobial resistance genes. “The big question is are these extracellular resistance genes of concern to public health?” says KAUST postdoctoral fellow, David Mantilla-Calderon. “We don’t have an answer to this question yet, but the first prerequisite these genes must fulfill to be of concern is that they need to be harbored within a viable bacterial cell. This is only possible through a process called natural transformation, which allows extracellular DNA uptake and integration into the bacterial chromosome.”

Mantilla-Calderon and colleagues at KAUST found1 that natural transformation was stimulated in a bacterium commonly found in water and soil, called Acinetobacter baylyi, when it was in the presence of the chlorine byproduct, bromoacetic acid. They found that this disinfection byproduct caused DNA damage in the bacterium, inducing a DNA repair pathway that is known to also increase the integration of foreign DNA into the bacterium’s genome.

Ph.D. student Nicolas Augsburger next investigated2 the effects of sunlight and one component of sunlight, UV light, on natural transformation. “We wanted to see if there was a safer way to disinfect treated wastewater without provoking an increase in natural transformation in environmental bacteria,” he explains.

Interestingly, Augsburger and his colleagues found that, similar to bromoacetic acid, treatment with either the full spectrum of sunlight or only with UV light caused increased natural transformation in Acinetobacter baylyi.

David Mantilla-Calderon (left) and Nicholas Augsburger discuss the results of their UV treatment of the natural transformation they stimulated in a common bacterium when it was in the presence of the chlorine byproduct, bromoacetic acid, casting doubt on commonly used wastewater treatment. Photo credit: King Abdullah University of Science and Technology

“What surprised us was the finding that after treatment with UV light, the bacterium’s genes were damaged to the extent that they were no longer functional,” says Augsburger. “Thus, although treatment with UV light increased the integration of foreign DNA into the bacterium, just like disinfection byproducts and sunlight, it will not be able to express those genes.”

“Our studies question our current reliance on the use of chlorine as the final disinfection step in most wastewater treatment plants,” says microbiologist Peiying Hong, who supervised the studies. “A disinfection strategy using UV light could be considered for disinfecting low turbidity water. This could help in minimizing wastewater contribution to antimicrobial resistance.”

Hong’s lab is now investigating how various stressors might interact to affect uptake and integration rates of extracellular DNA into bacteria.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.